IEEE Solid-States Circuits Magazine - Summer 2019 - 21

regenerated, resulting in zero code
error. By integrating the probability
mass of v ID in each range and incrementing the probability of the associated code error by this amount, we
can construct the ADC output code
error PMF (see "Computing the Noiseless Probability Mass Function").
Previously, we found that the
probability of any metastable event is
Pmeta = 2B +1 e - (BN -Teasy /x) . Teasy /x depends strictly on B, so Pmeta is deter-

mined entirely by a single design variable:
N. For the synchronous architecture,
we found that N determined both Pmeta
and the entire shape of the code error
distribution. For asynchronous architecture, this is not the case. The shape of
the ADC output code error PMF depends
on two design variables: N and TFIX /x,
the number of comparator time constants available for regeneration and the
number of comparator time constants
consumed by fixed delay. Note that, to-

gether, these two parameters specify the
number of comparator time constants
in the total normalized conversion time
Ts /x. To show why the asynchronous
code error PMF has a 2D design space instead of a 1D design space, we examine
two examples shown in Figure 5.
Let's begin with Figure 5(a), which
shows two design points sharing the
same value of N. Design 1 has zero
fixed delay, and design 2 has nonzero fixed delay. In design 2, the fixed

4
111
Time

3
110

000 X00 100

1X0

100

10X

2

101

101
vID

1
100

vID/VLSB

φs
φc
vod

0
011
-1

D

D2
Ttrack treg,1

D1

010

treg,2
TFIX

-2

treg,3

001

TFIX
-3

i=1

i=2

i=3

000

Metastable Bit

-4

(a)

D2

D1

Time

D0
Ts

(b)
000
-4

001
-3

010
-2

011
-1

100
0
vID/VLSB
(c)

101
1

110
2

111
3

4

FIGURE 4: (a) A timing diagram and timing bands for a particular input voltage near the bottom of code 101. Given the input voltage, each
regeneration time is determined. The timing bands illustrate how these regeneration times change and add together as a function of the
input voltage. The 3-b codes indicate ADC output during each particular timing band. (b) The timing bands are extended to cover the full-scale
range. Note that the ADC output code during each band changes across the full-scale range. (c) A 1D cross section of timing bands at the end
of the conversion time. This breaks the full-scale range down into segments, each corresponding to running out of time during a particular bit
cycle and incurring a particular code error. The probability mass of v ID inside each segment is used to increment the probability of the corresponding code error in the PMF.

IEEE SOLID-STATE CIRCUITS MAGAZINE

SU M M E R 2 0 19

21



IEEE Solid-States Circuits Magazine - Summer 2019

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2019

Contents
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2019 - Contents
IEEE Solid-States Circuits Magazine - Summer 2019 - 2
IEEE Solid-States Circuits Magazine - Summer 2019 - 3
IEEE Solid-States Circuits Magazine - Summer 2019 - 4
IEEE Solid-States Circuits Magazine - Summer 2019 - 5
IEEE Solid-States Circuits Magazine - Summer 2019 - 6
IEEE Solid-States Circuits Magazine - Summer 2019 - 7
IEEE Solid-States Circuits Magazine - Summer 2019 - 8
IEEE Solid-States Circuits Magazine - Summer 2019 - 9
IEEE Solid-States Circuits Magazine - Summer 2019 - 10
IEEE Solid-States Circuits Magazine - Summer 2019 - 11
IEEE Solid-States Circuits Magazine - Summer 2019 - 12
IEEE Solid-States Circuits Magazine - Summer 2019 - 13
IEEE Solid-States Circuits Magazine - Summer 2019 - 14
IEEE Solid-States Circuits Magazine - Summer 2019 - 15
IEEE Solid-States Circuits Magazine - Summer 2019 - 16
IEEE Solid-States Circuits Magazine - Summer 2019 - 17
IEEE Solid-States Circuits Magazine - Summer 2019 - 18
IEEE Solid-States Circuits Magazine - Summer 2019 - 19
IEEE Solid-States Circuits Magazine - Summer 2019 - 20
IEEE Solid-States Circuits Magazine - Summer 2019 - 21
IEEE Solid-States Circuits Magazine - Summer 2019 - 22
IEEE Solid-States Circuits Magazine - Summer 2019 - 23
IEEE Solid-States Circuits Magazine - Summer 2019 - 24
IEEE Solid-States Circuits Magazine - Summer 2019 - 25
IEEE Solid-States Circuits Magazine - Summer 2019 - 26
IEEE Solid-States Circuits Magazine - Summer 2019 - 27
IEEE Solid-States Circuits Magazine - Summer 2019 - 28
IEEE Solid-States Circuits Magazine - Summer 2019 - 29
IEEE Solid-States Circuits Magazine - Summer 2019 - 30
IEEE Solid-States Circuits Magazine - Summer 2019 - 31
IEEE Solid-States Circuits Magazine - Summer 2019 - 32
IEEE Solid-States Circuits Magazine - Summer 2019 - 33
IEEE Solid-States Circuits Magazine - Summer 2019 - 34
IEEE Solid-States Circuits Magazine - Summer 2019 - 35
IEEE Solid-States Circuits Magazine - Summer 2019 - 36
IEEE Solid-States Circuits Magazine - Summer 2019 - 37
IEEE Solid-States Circuits Magazine - Summer 2019 - 38
IEEE Solid-States Circuits Magazine - Summer 2019 - 39
IEEE Solid-States Circuits Magazine - Summer 2019 - 40
IEEE Solid-States Circuits Magazine - Summer 2019 - 41
IEEE Solid-States Circuits Magazine - Summer 2019 - 42
IEEE Solid-States Circuits Magazine - Summer 2019 - 43
IEEE Solid-States Circuits Magazine - Summer 2019 - 44
IEEE Solid-States Circuits Magazine - Summer 2019 - 45
IEEE Solid-States Circuits Magazine - Summer 2019 - 46
IEEE Solid-States Circuits Magazine - Summer 2019 - 47
IEEE Solid-States Circuits Magazine - Summer 2019 - 48
IEEE Solid-States Circuits Magazine - Summer 2019 - 49
IEEE Solid-States Circuits Magazine - Summer 2019 - 50
IEEE Solid-States Circuits Magazine - Summer 2019 - 51
IEEE Solid-States Circuits Magazine - Summer 2019 - 52
IEEE Solid-States Circuits Magazine - Summer 2019 - 53
IEEE Solid-States Circuits Magazine - Summer 2019 - 54
IEEE Solid-States Circuits Magazine - Summer 2019 - 55
IEEE Solid-States Circuits Magazine - Summer 2019 - 56
IEEE Solid-States Circuits Magazine - Summer 2019 - 57
IEEE Solid-States Circuits Magazine - Summer 2019 - 58
IEEE Solid-States Circuits Magazine - Summer 2019 - 59
IEEE Solid-States Circuits Magazine - Summer 2019 - 60
IEEE Solid-States Circuits Magazine - Summer 2019 - 61
IEEE Solid-States Circuits Magazine - Summer 2019 - 62
IEEE Solid-States Circuits Magazine - Summer 2019 - 63
IEEE Solid-States Circuits Magazine - Summer 2019 - 64
IEEE Solid-States Circuits Magazine - Summer 2019 - 65
IEEE Solid-States Circuits Magazine - Summer 2019 - 66
IEEE Solid-States Circuits Magazine - Summer 2019 - 67
IEEE Solid-States Circuits Magazine - Summer 2019 - 68
IEEE Solid-States Circuits Magazine - Summer 2019 - 69
IEEE Solid-States Circuits Magazine - Summer 2019 - 70
IEEE Solid-States Circuits Magazine - Summer 2019 - 71
IEEE Solid-States Circuits Magazine - Summer 2019 - 72
IEEE Solid-States Circuits Magazine - Summer 2019 - 73
IEEE Solid-States Circuits Magazine - Summer 2019 - 74
IEEE Solid-States Circuits Magazine - Summer 2019 - 75
IEEE Solid-States Circuits Magazine - Summer 2019 - 76
IEEE Solid-States Circuits Magazine - Summer 2019 - 77
IEEE Solid-States Circuits Magazine - Summer 2019 - 78
IEEE Solid-States Circuits Magazine - Summer 2019 - 79
IEEE Solid-States Circuits Magazine - Summer 2019 - 80
IEEE Solid-States Circuits Magazine - Summer 2019 - 81
IEEE Solid-States Circuits Magazine - Summer 2019 - 82
IEEE Solid-States Circuits Magazine - Summer 2019 - 83
IEEE Solid-States Circuits Magazine - Summer 2019 - 84
IEEE Solid-States Circuits Magazine - Summer 2019 - 85
IEEE Solid-States Circuits Magazine - Summer 2019 - 86
IEEE Solid-States Circuits Magazine - Summer 2019 - 87
IEEE Solid-States Circuits Magazine - Summer 2019 - 88
IEEE Solid-States Circuits Magazine - Summer 2019 - 89
IEEE Solid-States Circuits Magazine - Summer 2019 - 90
IEEE Solid-States Circuits Magazine - Summer 2019 - 91
IEEE Solid-States Circuits Magazine - Summer 2019 - 92
IEEE Solid-States Circuits Magazine - Summer 2019 - 93
IEEE Solid-States Circuits Magazine - Summer 2019 - 94
IEEE Solid-States Circuits Magazine - Summer 2019 - 95
IEEE Solid-States Circuits Magazine - Summer 2019 - 96
IEEE Solid-States Circuits Magazine - Summer 2019 - 97
IEEE Solid-States Circuits Magazine - Summer 2019 - 98
IEEE Solid-States Circuits Magazine - Summer 2019 - 99
IEEE Solid-States Circuits Magazine - Summer 2019 - 100
IEEE Solid-States Circuits Magazine - Summer 2019 - 101
IEEE Solid-States Circuits Magazine - Summer 2019 - 102
IEEE Solid-States Circuits Magazine - Summer 2019 - 103
IEEE Solid-States Circuits Magazine - Summer 2019 - 104
IEEE Solid-States Circuits Magazine - Summer 2019 - 105
IEEE Solid-States Circuits Magazine - Summer 2019 - 106
IEEE Solid-States Circuits Magazine - Summer 2019 - 107
IEEE Solid-States Circuits Magazine - Summer 2019 - 108
IEEE Solid-States Circuits Magazine - Summer 2019 - 109
IEEE Solid-States Circuits Magazine - Summer 2019 - 110
IEEE Solid-States Circuits Magazine - Summer 2019 - 111
IEEE Solid-States Circuits Magazine - Summer 2019 - 112
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com