IEEE Solid-States Circuits Magazine - Summer 2019 - 72

state-of-the-art accelerators executing the popular Secure Hash Algorithm 2 consume energy greater than
but still comparable to AES.

Conclusions
In this article, the state of the art in
primitives for hardware security was
reviewed, beginning with the fundamentals and then moving on to silicon solutions for tightly energy- and
area-constrained systems. A performance scaling trend perspective was
provided by introducing the HWsecdb
and the PUFdb maintained by the
Green IC group of the Department of
Electrical and Computer Engineering
at the National University of Singapore. The analysis of PUFs and RNGs
revealed relentless (exponential) improvements in area and energy efficiency due to the research effort of
our community. In weak PUFs, it was
observed that the actual area and energy cost are dictated mostly by the
ECC and, thus, the PUF native stability. The most promising approaches
are mostly or fully digital in view of
their amenability for technology scaling and automated design. The state
of the art in strong PUFs is less mature and suffers from significantly
worse energy and throughput, leaving considerable room for further innovation. Similar considerations hold
for TRNGs, whose area and energy efficiency are exponentially improving,
especially in mostly and fully digital
solutions (e.g., coupled-ring-oscillator-based chaotic maps).
As another important trend, innovative solutions for lightweight privatekey cryptography with subpicojoule/
bit energy are being investigated.
Area- and energy-efficient solutions
adding flexibility for post-silicon geographical differentiation and future
upgradeability are also being investigated. The currently large energy cost
of flexibility leaves, again, interesting
room for further innovation. Publickey cryptography has been shown
to entail consumption three to six
orders of magnitude larger than that
of private-key cryptography, which
mandates fundamental rethinking of

72

SU M M E R 2 0 19

existing security protocols. In the end,
understanding the energy/area implications in tightly constrained systems
is crucial not only for the design of
SoCs but also for the proper choice of
security protocols. Tighter interaction
between chip design and protocols is
demanded for next-generation IoT devices to simultaneously assure a targeted level of security at a minimum
energy/area cost while enabling flexibility for future hardware patching.

Acknowledgments
The support of the Singapore National Research Foundation (SOCure
grant NRF2018NCR-NCR002-0001) is
acknowledged, as well the very valuable inputs and insights from Sachin
Taneja and Anastacia Alvarez from
the Green IC group of the Department of Electrical and Computer Engineering at the National University
of Singapore.

References
[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

A. M. Antonopoulos, Mastering Bitcoin:
Unlocking Digital Cryptocurrencies. Sebastopol, CA: O'Reilly Media, 2014.
M. Alioto, Ed., Enabling the Internet of Things:
From Integrated Circuits to Integrated Systems. Cham, Switzerland: Springer, 2017.
M. Alioto, "Perspectives on hardware security: Embedding it everywhere, continuously and inexpensively," YouTube, Apr.
26, 2018. [Online]. Available: https://www
.youtube.com/watch?v=44qL_XcAg1c
M. Alioto, "Hardware security: From basics
to ASICs," presented at the IEEE Int. SolidState Circuits Conf., San Francisco, CA, 2019.
T. Addabbo, M. Alioto, A. Fort, S. Rocchi,
and V. Vignoli, "A feedback strategy to
improve the entropy of a chaos-based
random bit generator," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 2,
pp. 326-337, 2006.
T. Addabbo, M. Alioto, A. Fort, A. Pasini,
S. Rocchi, and V. Vignoli, "A class of maximum-period nonlinear congruential
generators derived from the Rényi chaotic map," IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 54, no. 4, pp. 816-828, 2007.
M. Alioto and S. Taneja, "Enabling ubiquitous hardware security via energy-efficient primitives and systems," presented at the IEEE Custom Integrated Circuits
Conf., Austin, TX, 2019.
National Agency for Information Systems Security, "Functionality classes
and evaluation methodology for physical random number generator," Mar. 23,
2007. [Online]. Available: https://www
.ssi.gouv.fr/archive/site_documents/
cer t if ic at ion/ NOT E- 05 _ Ev a luat ion _
AIS31_en.pdf
M. N. Aman, S. Taneja, B. Sikdar, K. C.
Chua, and M. Alioto, "Token-based security for the Internet of Things with
dynamic energy-quality tradeoff," IEEE
Internet Things J., vol. 6, no. 2, pp. 2843-
2859, 2019.

IEEE SOLID-STATE CIRCUITS MAGAZINE

[10] A. Ballesil-Alvarez, W. Zhao, and M. Alioto, "15 fJ/bit static physically unclonable
functions for secure chip identification
with < 2% native bit instability and 140x
inter/intra PUF Hamming distance separation in 65nm," Int. Solid-States Circuits
Conf. Dig. Tech. Papers, pp. 256-258, 2015.
[11] S. Balatti, S. Ambrogio, Z. Wang, and D.
Ielmini, "True random number generation by variability of resistive switching
in oxide-based devices," IEEE J. Emerging
Select. Topics Circuits Syst., vol. 5, no.
2, pp. 214-221, 2015. doi: 10.1109/JETCAS.2015.2426492.
[12] H. Bock, M. Bucci, and R. Luzzi, "An
offset-compensated oscillator-based
random bit source for security applications," in Proc. Int. Workshop Cryptographic Hardware and Embedded Systems, 2004, pp. 268-281.
[13] J. Brown et al., "A low-power and highspeed true random number generator
using generated RTN," in Proc. 2018 IEEE
Symp. VLSI Technology, pp. C95-C96.
[14] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, "A high-speed
oscillator-based truly random number
source for cryptographic applications
on a smart card IC," IEEE Trans. Comput.,
vol. 52, no. 4, pp. 403-409, 2003.
[15] U. Banerjee, C. Juvekar, A. Wright, Arvind, and A. P. Chandrakasan, "An energy-efficient reconfigurable DTLS cryptographic engine for end-to-end security
in IoT applications," in Proc. 2018 IEEE
Int. Solid-State Circuits Conf., pp. 42-43.
[16] S.-G. Bae, Y. Kim, Y. Park, and C. Kim, "3Gb/s high-speed true random number
generator using common-mode operating comparator and sampling uncertainty of D flip-flop," IEEE J. Solid-State Circuits, vol. 52, no. 2, pp. 605-610, 2017.
[17] M. Bucci and R. Luzzi, "Fully digital random bit generators for cryptographic applications," IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 55, no. 3, pp. 861-875, 2008.
[18] M. Bhargava and K. Mai, "An efficient reliable PUF-based cryptographic key generator in 65nm CMOS," in Proc. 2014 Design,
Automation & Test in Europe Conf. Exhibition, pp. 1-6.
[19] R. Brederlow, R. Prakash, C. Paulus, and
R. Thewes, "A low-power true random
number generator using random telegraph noise of single oxide-traps," 2006
IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers, pp. 1666-1675, 2006.
[20] Bundesamt für Sicherheit in der Informationstechnik, "Cryptographic mechanisms:
Recommendations and key lengths," May  29,
2018. [Online]. Available: https://www.bsi
.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/TechGuidelines/TG02102/
BSI-TR-02102-1.pdf?_blob=publicationFile&v=8
[21] W. H. Choi et al., "A magnetic tunnel
junction based true random number
generator with conditional perturb and
real-time output probability tracking,"
in Proc. 2014 IEEE Int. Electron Devices
Meeting, pp. 12.5.1-12.5.4.
[22] F. Courbon, S. Skorobogatov, and C.
Woods, "Reverse engineering Flash EEPROM memories using scanning electron microscopy," in Proc. 2016 Int. Conf.
Smart Card Research and Advanced Applications, pp. 57-72.
[23] A. T. Do and X. Liu, "25 fJ/bit, 5Mb/s, 0.3
V true random number generator with capacitively-coupled chaos system and dualedge sampling scheme," in Proc. 2017 IEEE
Asian Solid-State Circuits Conf., pp. 61-64.
[24] S. N. Dhanuskodi, A. Vijayakumar, and S.
Kundu, "A chaotic ring oscillator based


https://www.youtube.com/watch?v=44qL_XcAg1c https://www.youtube.com/watch?v=44qL_XcAg1c https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?_blob=publicationFile&v=8 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?_blob=publicationFile&v=8 https://www.ssi.gouv.fr/archive/site_documents/certification/NOTE-05_Evaluation_AIS31_en.pdf https://www.ssi.gouv.fr/archive/site_documents/certification/NOTE-05_Evaluation_AIS31_en.pdf

IEEE Solid-States Circuits Magazine - Summer 2019

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2019

Contents
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2019 - Contents
IEEE Solid-States Circuits Magazine - Summer 2019 - 2
IEEE Solid-States Circuits Magazine - Summer 2019 - 3
IEEE Solid-States Circuits Magazine - Summer 2019 - 4
IEEE Solid-States Circuits Magazine - Summer 2019 - 5
IEEE Solid-States Circuits Magazine - Summer 2019 - 6
IEEE Solid-States Circuits Magazine - Summer 2019 - 7
IEEE Solid-States Circuits Magazine - Summer 2019 - 8
IEEE Solid-States Circuits Magazine - Summer 2019 - 9
IEEE Solid-States Circuits Magazine - Summer 2019 - 10
IEEE Solid-States Circuits Magazine - Summer 2019 - 11
IEEE Solid-States Circuits Magazine - Summer 2019 - 12
IEEE Solid-States Circuits Magazine - Summer 2019 - 13
IEEE Solid-States Circuits Magazine - Summer 2019 - 14
IEEE Solid-States Circuits Magazine - Summer 2019 - 15
IEEE Solid-States Circuits Magazine - Summer 2019 - 16
IEEE Solid-States Circuits Magazine - Summer 2019 - 17
IEEE Solid-States Circuits Magazine - Summer 2019 - 18
IEEE Solid-States Circuits Magazine - Summer 2019 - 19
IEEE Solid-States Circuits Magazine - Summer 2019 - 20
IEEE Solid-States Circuits Magazine - Summer 2019 - 21
IEEE Solid-States Circuits Magazine - Summer 2019 - 22
IEEE Solid-States Circuits Magazine - Summer 2019 - 23
IEEE Solid-States Circuits Magazine - Summer 2019 - 24
IEEE Solid-States Circuits Magazine - Summer 2019 - 25
IEEE Solid-States Circuits Magazine - Summer 2019 - 26
IEEE Solid-States Circuits Magazine - Summer 2019 - 27
IEEE Solid-States Circuits Magazine - Summer 2019 - 28
IEEE Solid-States Circuits Magazine - Summer 2019 - 29
IEEE Solid-States Circuits Magazine - Summer 2019 - 30
IEEE Solid-States Circuits Magazine - Summer 2019 - 31
IEEE Solid-States Circuits Magazine - Summer 2019 - 32
IEEE Solid-States Circuits Magazine - Summer 2019 - 33
IEEE Solid-States Circuits Magazine - Summer 2019 - 34
IEEE Solid-States Circuits Magazine - Summer 2019 - 35
IEEE Solid-States Circuits Magazine - Summer 2019 - 36
IEEE Solid-States Circuits Magazine - Summer 2019 - 37
IEEE Solid-States Circuits Magazine - Summer 2019 - 38
IEEE Solid-States Circuits Magazine - Summer 2019 - 39
IEEE Solid-States Circuits Magazine - Summer 2019 - 40
IEEE Solid-States Circuits Magazine - Summer 2019 - 41
IEEE Solid-States Circuits Magazine - Summer 2019 - 42
IEEE Solid-States Circuits Magazine - Summer 2019 - 43
IEEE Solid-States Circuits Magazine - Summer 2019 - 44
IEEE Solid-States Circuits Magazine - Summer 2019 - 45
IEEE Solid-States Circuits Magazine - Summer 2019 - 46
IEEE Solid-States Circuits Magazine - Summer 2019 - 47
IEEE Solid-States Circuits Magazine - Summer 2019 - 48
IEEE Solid-States Circuits Magazine - Summer 2019 - 49
IEEE Solid-States Circuits Magazine - Summer 2019 - 50
IEEE Solid-States Circuits Magazine - Summer 2019 - 51
IEEE Solid-States Circuits Magazine - Summer 2019 - 52
IEEE Solid-States Circuits Magazine - Summer 2019 - 53
IEEE Solid-States Circuits Magazine - Summer 2019 - 54
IEEE Solid-States Circuits Magazine - Summer 2019 - 55
IEEE Solid-States Circuits Magazine - Summer 2019 - 56
IEEE Solid-States Circuits Magazine - Summer 2019 - 57
IEEE Solid-States Circuits Magazine - Summer 2019 - 58
IEEE Solid-States Circuits Magazine - Summer 2019 - 59
IEEE Solid-States Circuits Magazine - Summer 2019 - 60
IEEE Solid-States Circuits Magazine - Summer 2019 - 61
IEEE Solid-States Circuits Magazine - Summer 2019 - 62
IEEE Solid-States Circuits Magazine - Summer 2019 - 63
IEEE Solid-States Circuits Magazine - Summer 2019 - 64
IEEE Solid-States Circuits Magazine - Summer 2019 - 65
IEEE Solid-States Circuits Magazine - Summer 2019 - 66
IEEE Solid-States Circuits Magazine - Summer 2019 - 67
IEEE Solid-States Circuits Magazine - Summer 2019 - 68
IEEE Solid-States Circuits Magazine - Summer 2019 - 69
IEEE Solid-States Circuits Magazine - Summer 2019 - 70
IEEE Solid-States Circuits Magazine - Summer 2019 - 71
IEEE Solid-States Circuits Magazine - Summer 2019 - 72
IEEE Solid-States Circuits Magazine - Summer 2019 - 73
IEEE Solid-States Circuits Magazine - Summer 2019 - 74
IEEE Solid-States Circuits Magazine - Summer 2019 - 75
IEEE Solid-States Circuits Magazine - Summer 2019 - 76
IEEE Solid-States Circuits Magazine - Summer 2019 - 77
IEEE Solid-States Circuits Magazine - Summer 2019 - 78
IEEE Solid-States Circuits Magazine - Summer 2019 - 79
IEEE Solid-States Circuits Magazine - Summer 2019 - 80
IEEE Solid-States Circuits Magazine - Summer 2019 - 81
IEEE Solid-States Circuits Magazine - Summer 2019 - 82
IEEE Solid-States Circuits Magazine - Summer 2019 - 83
IEEE Solid-States Circuits Magazine - Summer 2019 - 84
IEEE Solid-States Circuits Magazine - Summer 2019 - 85
IEEE Solid-States Circuits Magazine - Summer 2019 - 86
IEEE Solid-States Circuits Magazine - Summer 2019 - 87
IEEE Solid-States Circuits Magazine - Summer 2019 - 88
IEEE Solid-States Circuits Magazine - Summer 2019 - 89
IEEE Solid-States Circuits Magazine - Summer 2019 - 90
IEEE Solid-States Circuits Magazine - Summer 2019 - 91
IEEE Solid-States Circuits Magazine - Summer 2019 - 92
IEEE Solid-States Circuits Magazine - Summer 2019 - 93
IEEE Solid-States Circuits Magazine - Summer 2019 - 94
IEEE Solid-States Circuits Magazine - Summer 2019 - 95
IEEE Solid-States Circuits Magazine - Summer 2019 - 96
IEEE Solid-States Circuits Magazine - Summer 2019 - 97
IEEE Solid-States Circuits Magazine - Summer 2019 - 98
IEEE Solid-States Circuits Magazine - Summer 2019 - 99
IEEE Solid-States Circuits Magazine - Summer 2019 - 100
IEEE Solid-States Circuits Magazine - Summer 2019 - 101
IEEE Solid-States Circuits Magazine - Summer 2019 - 102
IEEE Solid-States Circuits Magazine - Summer 2019 - 103
IEEE Solid-States Circuits Magazine - Summer 2019 - 104
IEEE Solid-States Circuits Magazine - Summer 2019 - 105
IEEE Solid-States Circuits Magazine - Summer 2019 - 106
IEEE Solid-States Circuits Magazine - Summer 2019 - 107
IEEE Solid-States Circuits Magazine - Summer 2019 - 108
IEEE Solid-States Circuits Magazine - Summer 2019 - 109
IEEE Solid-States Circuits Magazine - Summer 2019 - 110
IEEE Solid-States Circuits Magazine - Summer 2019 - 111
IEEE Solid-States Circuits Magazine - Summer 2019 - 112
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com