IEEE Solid-States Circuits Magazine - Summer 2020 - 26
■■
■■
■■
■■
■■
Feedback is an important instrument in the analog designers' toolkit. Additionally, in VCO-based
ADCs, feedback techniques demonstrate their value by improving
linearity as well as noise shaping.
Yet several published open-loop,
VCO-based ADC designs have comparable or even better performance
than do competing closed-loop designs, which is definitely the case
for ultrahigh-speed circuits.
For such open-loop, VCO-based
ADC circuits, feedforward and
digital calibration techniques are
the important enablers used to
boost linearity performance.
Oversampling, time-based chopping, and sensor embedding are
among the tricks used to improve
performance and power efficiency for sensing applications.
Although the core digital ring oscillator is well known, there have
been lots of circuit innovations
for VCO-based ADCs in recent
years, improving large-signal linearity and boosting speed.
Acknowledgments
This work was supported by the
Fund for Scientific Research Fland e r s ( B e lg i u m) a n d b y Sp a n i s h
Ministry of Science and Innovation
project TEC2017-82653-R (Spain).
References
[1] E. Roza, "Analog-to-digital conversion via
duty-cycle modulation," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 44, no. 11, pp. 907-914, Nov. 1997.
doi: 10.1109/82.644044.
[2] A. A. Lazar and L. T. Toth, "Perfect recovery and sensitivity analysis of time encoded bandlimited signals," IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 51, no. 10,
pp. 2060-2073, Oct. 2004. doi: 10.1109/
TCSI.2004.835026.
[3] G. G. E. Gielen, L. Hernandez, and P. Rombouts, "Time-encoding analog-to-digital
converters: Bridging the analog gap to advanced digital CMOS-Part 1: Basic principles," IEEE Solid State Circuits Mag., vol. 12,
no. 2, pp. 47-55, Spring 2020. doi: 10.1109/
MSSC.2020.2987536.
[4] E. Gutierrez, P. Rombouts, and L. Hernandez, "Why and how VCO-based ADCs
can improve instrumentation applications," in Proc. 25th IEEE Int. Conf. Electronics, Circuits and Systems (ICECS),
Dec. 2018, pp. 101-104. doi: 10.1109/
ICECS.2018.8618004.
[5] C. Tu, Y. Wang, and T. Lin, "A low-noise
area-efficient chopped VCO-based CTDSM
for sensor applications in 40-nm CMOS,"
IEEE J. Solid-State Circuits, vol. 52, no. 10,
26
SU M M E R 2 0 2 0
pp. 2523-2532, Oct. 2017. doi: 10.1109/
JSSC.2017.2724025.
[6] S. Li, A. Mukherjee, and N. Sun, "A
174.3-dB FoM VCO-based CT delta sigma modulator with a fully-digital phase
extended quantizer and tri-level resistor DAC in 130-nm CMOS," IEEE J. SolidState Circuits, vol. 52, no. 7, pp. 1940-
1952, July 2017. doi: 10.1109/JSSC.2017
.2693244.
[7] A. Quintero, C. Perez, E. Gutierrez, and
L. Hernandez, "VCO-based ADC with a
simplified DAC for non-linearity correction," Electron. Lett., vol. 54, no. 13, pp.
813-815, 2018. doi: 10.1049/el.2018.1000.
[8] Y. Zhong et al., "A second-order purely
VCO-based CT ΔΣ ADC using a m
- odified
DPLL structure in 40-nm CMOS," IEEE
J. Solid-State Circuits, vol. 55, no. 2,
pp. 356 -368, Feb. 2020. doi: 10.1109/
JSSC.2019.2948008.
[9] W. Zhao et al., "A 0.025-mm2 0.8-V 78.5dB SNDR VCO -based sensor readout
circuit in a hybrid PLL-ΔΣ M structure,"
IEEE J. Solid-State Circuits, vol. 55, no.
3, pp. 666-679, Mar. 2020. doi: 10.1109/
JSSC.2019.2959479.
[10] A . Babaie-Fishani and P. Rombouts,
"A mostly digital VCO-based CT-SDM
with third-order noise shaping," IEEE
J. Solid-State Circuits , vol. 52, no. 8,
pp. 2141-2153, Aug. 2017. doi: 10.1109/
JSSC.2017.2688364.
[11] G. Gielen et al., "Time-based sensor interface circuits in CMOS and carbon
nanotube technologies," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 5,
pp. 577-586, May 2016. doi: 10.1109/
TCSI.2016.2525098.
[12] J. Van Rethy, H. Danneels, V. De Smedt, W.
Dehaene, and G. E. Gielen, "Supply-noiseresilient design of a BBPLL-based forcebalanced wheatstone bridge interface in
130-nm CMOS," IEEE J. Solid-State Circuits,
vol. 48, no. 11, pp. 2618-2627, Nov. 2013.
doi: 10.1109/JSSC.2013.2274831.
[13] J. Marin, E. Sacco, J. Vergauwen, and G.
Gielen, "A robust BBPLL-based 0.18-μm
CMOS resistive sensor interface with
high drift resilience over a −40 °C-175 °C
temperature range," IEEE J. Solid-State Circuits, vol. 54, no. 7, pp. 1862-1873, July
2019. doi: 10.1109/JSSC.2019.2911888.
[14] R. T. Baird and T. S. Fiez, "Linearity enhancement of multibit ΔΣ A/D and D/A
converters using data weighted ave r a g i n g ," I E E E Tra n s . Ci rc u i t s Sy s t . I I ,
Analog Digit. Signal Process., vol. 42, no.
12, pp. 753-762, Dec. 1995. doi: 10.1109/
82.476173.
[15] M. Z. Straayer and M. H. Perrott, "A 12-bit,
10-MHz bandwidth, continuous-time ΣΔ
ADC with a 5-bit, 950-MS/s VCO-based
quantizer," IEEE J. Solid-State Circuits, vol.
43, no. 4, pp. 805-814, Apr. 2008. doi:
10.1109/JSSC.2008.917500.
[16] K. Lee, Y. Yoon, and N. Sun, "A scalingfriendly low-power small-area ΔΣ ADC
with VCO-based integrator and intrinsic mismatch shaping capability," IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 5, no.
4, pp. 561-573, Dec. 2015. doi: 10.1109/
JETCAS.2015.2502166.
[17] K. Reddy et al., "A 16-mW 78-dB SNDR
10-MHz BW CT ΔΣ ADC using residuecancelling VCO-based quantizer," IEEE
J. Solid-State Circuits, vol. 47, no. 12,
pp. 2916-2927, Dec. 2012. doi: 10.1109/
JSSC.2012.2218062.
[18] K. Ragab and N. Sun, "A 12-b ENOB 2.5MHz BW VCO-based 0-1 MASH ADC with
direct digital background calibration,"
IEEE J. Solid-State Circuits, vol. 52, no.
IEEE SOLID-STATE CIRCUITS MAGAZINE
2, pp. 433-447, Feb. 2017. doi: 10.1109/
JSSC.2016.2615321.
[19] X. Xing and G. G. E. Gielen, "A 42 fJ/StepFoM two-step VCO-based delta-sigma
ADC in 40 nm CMOS," IEEE J. Solid-State
Circuits, vol. 50, no. 3, pp. 714-723, Mar.
2015. doi: 10.1109/JSSC.2015.2393814.
[20] H. Shibata et al., "16.6 an 800MHz-BW
VCO-based continuous-time pipelined
ADC with inherent anti-aliasing and onchip digital reconstruction filter," in Proc.
IEEE Int. Solid- State Circuits Conf. (ISSCC),
Feb. 2020, pp. 260-262. doi: 10.1109/ISSCC19947.2020.9062917.
[21] J. Daniels, W. Dehaene, M. Steyaert, and
A. Wiesbauer, "A 0.02mm2 65nm CMOS
30MHz BW all-digital differential VCObased ADC with 64dB SNDR," in Proc.
Symp. VLSI Circuits, June 2010, pp. 155-
156. doi: 10.1109/VLSIC.2010.5560314.
[22] G. Taylor and I. Galton, "A mostly-digital
variable-rate continuous-time delta-sigma
modulator ADC," IEEE J. Solid-State Circuits,
vol. 45, no. 12, pp. 2634-2646, Dec. 2010.
doi: 10.1109/JSSC.2010.2073193.
[23] G. Taylor and I. Galton, "A reconfigurable mostly-digital delta-sigma ADC
with a worst-case FOM of 160 dB," IEEE J.
Solid-State Circuits, vol. 48, no. 4, pp.
983-995, Apr. 2013. doi: 10.1109/JSSC.
2013.2239113.
[24] S. Rao, K. Reddy, B. Young, and P. K. Hanumolu, "A deterministic digital background calibration technique for VCObased ADCs," IEEE J. Solid-State Circuits,
vol. 49, no. 4, pp. 950-960, Apr. 2014. doi:
10.1109/JSSC.2013.2293753.
[25] T. Wu and M. S. Chen, "A noise-shaped
VCO-based nonuniform sampling ADC
w it h phase- doma in level crossing,"
IEEE J. Solid-State Circuits, vol. 54, no.
3, pp. 623-635, Mar. 2019. doi: 10.1109/
JSSC.2019.2892426.
[26] A. Babaie-Fishani and P. Rombouts, "True
high-order VCO-based ADC," Electron.
Lett., vol. 51, no. 1, pp. 23-25, 2015. doi:
10.1049/el.2014.2719.
[27] F. Cardes, E. Gutierrez, A. Quintero, C.
Buffa, A. Wiesbauer, and L. Hernandez,
"0.04-mm2 103-dB-A dynamic range second-order VCO-based audio ΣΔ ADC in
0.13-µm CMOS," IEEE J. Solid-State Circuits,
vol. 53, no. 6, pp. 1731-1742, June 2018.
doi: 10.1109/JSSC.2018.2799938.
[28] A. Jayaraj, M. Danesh, S. T. Chandrasekaran, and A. Sanyal, "Highly digital second-order ΔΣ VCO ADC," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 7,
pp. 2415-2425, July 2019. doi: 10.1109/
TCSI.2019.2898415.
[29] L. B. Leene and T. G. Constandinou, "A 3rd
order time domain delta sigma modulator with extended-phase detection," in
Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS), May 2019, pp. 1-5. doi: 10.1109/
ISCAS.2019.8702705.
[30] P. Gao, X. Xing, J. Craninck x, and G.
Gielen, "Design of an intrinsically-linear
double-VCO-based ADC with 2nd-order
noise shaping," in Proc. Design, Automation Test Europe Conf. Exhibition (DATE),
Mar. 2012, pp. 1215-1220. doi: 10.1109/
DATE.2012.6176678.
[31] L. Hernandez, "VCO based multi-stage
noise shaping ADC," Electron. Lett., vol.
48, no. 4, pp. 206 -208, Feb. 2012. doi:
10.1049/el.2011.3606.
[32] W. Yu, J. Kim, K. Kim, and S. Cho, "A timedomain high-order MASH ΔΣ ADC using
voltage-controlled gated-ring oscillator,"
IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 60, no. 4, pp. 856-866, 2013. doi:
10.1109/TCSI.2012.2209298.
IEEE Solid-States Circuits Magazine - Summer 2020
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2020
Contents
IEEE Solid-States Circuits Magazine - Summer 2020 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2020 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2020 - Contents
IEEE Solid-States Circuits Magazine - Summer 2020 - 2
IEEE Solid-States Circuits Magazine - Summer 2020 - 3
IEEE Solid-States Circuits Magazine - Summer 2020 - 4
IEEE Solid-States Circuits Magazine - Summer 2020 - 5
IEEE Solid-States Circuits Magazine - Summer 2020 - 6
IEEE Solid-States Circuits Magazine - Summer 2020 - 7
IEEE Solid-States Circuits Magazine - Summer 2020 - 8
IEEE Solid-States Circuits Magazine - Summer 2020 - 9
IEEE Solid-States Circuits Magazine - Summer 2020 - 10
IEEE Solid-States Circuits Magazine - Summer 2020 - 11
IEEE Solid-States Circuits Magazine - Summer 2020 - 12
IEEE Solid-States Circuits Magazine - Summer 2020 - 13
IEEE Solid-States Circuits Magazine - Summer 2020 - 14
IEEE Solid-States Circuits Magazine - Summer 2020 - 15
IEEE Solid-States Circuits Magazine - Summer 2020 - 16
IEEE Solid-States Circuits Magazine - Summer 2020 - 17
IEEE Solid-States Circuits Magazine - Summer 2020 - 18
IEEE Solid-States Circuits Magazine - Summer 2020 - 19
IEEE Solid-States Circuits Magazine - Summer 2020 - 20
IEEE Solid-States Circuits Magazine - Summer 2020 - 21
IEEE Solid-States Circuits Magazine - Summer 2020 - 22
IEEE Solid-States Circuits Magazine - Summer 2020 - 23
IEEE Solid-States Circuits Magazine - Summer 2020 - 24
IEEE Solid-States Circuits Magazine - Summer 2020 - 25
IEEE Solid-States Circuits Magazine - Summer 2020 - 26
IEEE Solid-States Circuits Magazine - Summer 2020 - 27
IEEE Solid-States Circuits Magazine - Summer 2020 - 28
IEEE Solid-States Circuits Magazine - Summer 2020 - 29
IEEE Solid-States Circuits Magazine - Summer 2020 - 30
IEEE Solid-States Circuits Magazine - Summer 2020 - 31
IEEE Solid-States Circuits Magazine - Summer 2020 - 32
IEEE Solid-States Circuits Magazine - Summer 2020 - 33
IEEE Solid-States Circuits Magazine - Summer 2020 - 34
IEEE Solid-States Circuits Magazine - Summer 2020 - 35
IEEE Solid-States Circuits Magazine - Summer 2020 - 36
IEEE Solid-States Circuits Magazine - Summer 2020 - 37
IEEE Solid-States Circuits Magazine - Summer 2020 - 38
IEEE Solid-States Circuits Magazine - Summer 2020 - 39
IEEE Solid-States Circuits Magazine - Summer 2020 - 40
IEEE Solid-States Circuits Magazine - Summer 2020 - 41
IEEE Solid-States Circuits Magazine - Summer 2020 - 42
IEEE Solid-States Circuits Magazine - Summer 2020 - 43
IEEE Solid-States Circuits Magazine - Summer 2020 - 44
IEEE Solid-States Circuits Magazine - Summer 2020 - 45
IEEE Solid-States Circuits Magazine - Summer 2020 - 46
IEEE Solid-States Circuits Magazine - Summer 2020 - 47
IEEE Solid-States Circuits Magazine - Summer 2020 - 48
IEEE Solid-States Circuits Magazine - Summer 2020 - 49
IEEE Solid-States Circuits Magazine - Summer 2020 - 50
IEEE Solid-States Circuits Magazine - Summer 2020 - 51
IEEE Solid-States Circuits Magazine - Summer 2020 - 52
IEEE Solid-States Circuits Magazine - Summer 2020 - 53
IEEE Solid-States Circuits Magazine - Summer 2020 - 54
IEEE Solid-States Circuits Magazine - Summer 2020 - 55
IEEE Solid-States Circuits Magazine - Summer 2020 - 56
IEEE Solid-States Circuits Magazine - Summer 2020 - 57
IEEE Solid-States Circuits Magazine - Summer 2020 - 58
IEEE Solid-States Circuits Magazine - Summer 2020 - 59
IEEE Solid-States Circuits Magazine - Summer 2020 - 60
IEEE Solid-States Circuits Magazine - Summer 2020 - 61
IEEE Solid-States Circuits Magazine - Summer 2020 - 62
IEEE Solid-States Circuits Magazine - Summer 2020 - 63
IEEE Solid-States Circuits Magazine - Summer 2020 - 64
IEEE Solid-States Circuits Magazine - Summer 2020 - 65
IEEE Solid-States Circuits Magazine - Summer 2020 - 66
IEEE Solid-States Circuits Magazine - Summer 2020 - 67
IEEE Solid-States Circuits Magazine - Summer 2020 - 68
IEEE Solid-States Circuits Magazine - Summer 2020 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com