IEEE Solid-States Circuits Magazine - Summer 2021 - 37

of this is that it has the potential to
be rolled out worldwide in all LTE cellular
networks, with only software
updates. These examples represent
a shift in thinking inside wireless
standard communities to address
the power needs of the IoT, helping
to realize the adoption of trillions of
self-powered devices.
100,000
10,000
1,000
100
10
1
References
[1] J. Proakis, Digital Communications, 5th
ed. New York, NY, USA: McGraw-Hill, 2007.
[2] D. D. Wentzloff, " Low power radio survey, "
Univ. of Michigan, Ann Arbor, MI, USA. Accessed:
June 24, 2021. [Online]. Available:
www.eecs.umich.edu/wics/low_power
_radio_survey.html
[3] P. P. Wang and P. P. Mercier, " 28.2 A
220μW-85dBm sensitivity BLE-compliant
wake-up receiver achieving −60dB SIR
via single-die multi-channel FBAR-based
filtering and a 4-dimensional wake-up
signature, " in Proc. IEEE Int. Solid-State
Circuit Conf. (ISSCC), 2019, pp. 440-442.
[4] J. Moody et al., " Interference robust detector-first
near-zero power wake-up receiver, "
IEEE J. Solid-State Circuits, vol. 54,
no. 8, pp. 2149-2162, 2019. doi: 10.1109/
JSSC.2019.2912710.
[5] K. Huang et al., " A fully integrated
2.7µW-70.2dBm-sensitivity wake-up receiver
with charge-domain analog frontend,
−16.5dB-SIR, FEC and cryptographic
checksum, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2021, pp. 306-307.
[6] A. Dissanayake et al., " A multichannel,
MEMS-less −99dBm 260nW bit-level duty
cycled wakeup receiver, " in Proc. IEEE
Symp. VLSI Circuits, 2020, pp. 1-2. doi:
10.1109/VLSICircuits18222.2020.9162785.
[7] J. Im, H. Kim, and D. D. Wentzloff, " A
470µW −92.5dBm OOK/FSK receiver
IEEE 802.11 WiFi LP-WUR, " in Proc.
for
IEEE
44th European Solid-State Circuits Conf. (ESSCIRC),
2018, pp. 302-305. doi: 10.1109/ESSCIRC.2018.8494331.
[8]
A. Alghaihab, Y. Shi, J. Breiholz, H. Kim,
B. H. Calhoun, and D. D. Wentzloff, " Enhanced
interference rejection bluetooth
lowenergy back-channel receiver with LO
frequency hopping, " IEEE J. Solid-State Circuits,
vol. 54, no. 7, pp. 2019-2027, July
2019. doi: 10.1109/JSSC.2019.2907160.
[9] R. Liu et al., " An 802.11ba 495μW -92.6dBmsensitivity
blocker tolerant wake-up radio
receiver fully integrated with wi-fi transceiver, "
in Proc. IEEE Radio Freq. Integr. Circuits
Symp. (RFIC), 2019, pp. 255-258.
[10] J. Im, H. Kim, and D. D. Wentzloff, " A
217µW −82dBm IEEE 802.11 wi-fi LP-WUR
using a 3rd- harmonic passive mixer, "
in Proc. IEEE Radio Freq. Integr. Circuits
Symp. (RFIC), 2018, pp. 172-175.
[11] T. Odelberg et al., " A 2.1mW-109dBm NBIoT
wake-up receiver, " in Proc. IEEE Radio
Frequency Integrated Circuits Symp. (RFIC),
2021.
About the Authors
David D. Wentzloff (wentzlof@umich
.edu) received his Ph.D. degree from
0.1
0.01
0.001
0.0001
ULP Receivers
Coherent
Noncoherent
-140 -120 -100 -80
-60 -40 -20
Sensitivity (dBm)
FIGURE 7: ULP receivers exclusively use noncoherent architectures with modulation formats
such as OOK, pulse-position modulation, and frequency-shift keying.
the Massachusetts Institute of Technology,
Cambridge, in 2007. He is a
professor of electrical engineering
and computer science at the University
of Michigan, Ann Arbor, Michigan,
48109, USA. In 2012, he cofounded
Everactive, a fabless Industrial Internet
of Things company developing
ultralow-power wireless systems on
chip. His research interests include
radio-frequency ICs, with an emphasis
on ultralow-power design.
Abdullah Alghaihab (aalghaihab@
ksu.edu.sa) received his Ph.D. degree
in electrical engineering from the
University of Michigan, Ann Arbor, in
2020. He is an assistant professor of
electrical engineering at King Saud University,
Riyadh, 14215, Saudi Arabia.
His research interests include radiofrequency/mixed-signal
IC design for
wireless communication and lowpower
wireless transceivers.
Jaeho Im (jaeim@umich.edu)
received his PhD. degree in electrical
engineering from the University of
Michigan, Ann Arbor, in 2020, where
he was also a research fellow in electrical
and computer engineering. He is
with the Department of Military Science
Technology, Republic of Korea Army
Training and Doctrine Command, Seoul,
04064, South Korea. His research
interests include radio-frequency/
mixed-signal IC design for low-power
wireless transceivers and millimeterwave
transceivers and Internet of
Things system architecture and design.
Omar Abdelatty (omaratty@umich
.edu) received his M.Sc. degree from
Cairo University, Egypt, in 2015. He
is pursuing his Ph.D. degree in electrical
engineering at the University
of Michigan, Ann Arbor, Michigan,
48109, USA. From 2012 to 2015, he
was with the Cairo Circuits and Systems
Laboratory, Cairo University. His
research interests include the design
of energy-efficient wireless charging
and wireless connectivity circuits for
Internet of Things applications, selfpowered
wireless transceivers, lowpower
frequency synthesizers, and
5G millimeter-wave circuit design.
Trevor Odelberg (odelberg@
umich.edu) received his B.S. degree
in electrical engineering from Purdue
University, West Lafayette, Indiana, in
2017. He is pursuing his Ph.D. degree
in electrical and computer engineering
at the University of Michigan,
Ann Arbor, Michigan, 48109, USA.
His research interests include radiofrequency
ICs and systems for nextgeneration
wireless technologies.
IEEE SOLID-STATE CIRCUITS MAGAZINE
SUMMER 2021
37
Power (µW)
http://www.eecs.umich.edu/wics/low_power_radio_survey.html http://www.eecs.umich.edu/wics/low_power_radio_survey.html

IEEE Solid-States Circuits Magazine - Summer 2021

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2021

Contents
IEEE Solid-States Circuits Magazine - Summer 2021 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2021 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2021 - Contents
IEEE Solid-States Circuits Magazine - Summer 2021 - 2
IEEE Solid-States Circuits Magazine - Summer 2021 - 3
IEEE Solid-States Circuits Magazine - Summer 2021 - 4
IEEE Solid-States Circuits Magazine - Summer 2021 - 5
IEEE Solid-States Circuits Magazine - Summer 2021 - 6
IEEE Solid-States Circuits Magazine - Summer 2021 - 7
IEEE Solid-States Circuits Magazine - Summer 2021 - 8
IEEE Solid-States Circuits Magazine - Summer 2021 - 9
IEEE Solid-States Circuits Magazine - Summer 2021 - 10
IEEE Solid-States Circuits Magazine - Summer 2021 - 11
IEEE Solid-States Circuits Magazine - Summer 2021 - 12
IEEE Solid-States Circuits Magazine - Summer 2021 - 13
IEEE Solid-States Circuits Magazine - Summer 2021 - 14
IEEE Solid-States Circuits Magazine - Summer 2021 - 15
IEEE Solid-States Circuits Magazine - Summer 2021 - 16
IEEE Solid-States Circuits Magazine - Summer 2021 - 17
IEEE Solid-States Circuits Magazine - Summer 2021 - 18
IEEE Solid-States Circuits Magazine - Summer 2021 - 19
IEEE Solid-States Circuits Magazine - Summer 2021 - 20
IEEE Solid-States Circuits Magazine - Summer 2021 - 21
IEEE Solid-States Circuits Magazine - Summer 2021 - 22
IEEE Solid-States Circuits Magazine - Summer 2021 - 23
IEEE Solid-States Circuits Magazine - Summer 2021 - 24
IEEE Solid-States Circuits Magazine - Summer 2021 - 25
IEEE Solid-States Circuits Magazine - Summer 2021 - 26
IEEE Solid-States Circuits Magazine - Summer 2021 - 27
IEEE Solid-States Circuits Magazine - Summer 2021 - 28
IEEE Solid-States Circuits Magazine - Summer 2021 - 29
IEEE Solid-States Circuits Magazine - Summer 2021 - 30
IEEE Solid-States Circuits Magazine - Summer 2021 - 31
IEEE Solid-States Circuits Magazine - Summer 2021 - 32
IEEE Solid-States Circuits Magazine - Summer 2021 - 33
IEEE Solid-States Circuits Magazine - Summer 2021 - 34
IEEE Solid-States Circuits Magazine - Summer 2021 - 35
IEEE Solid-States Circuits Magazine - Summer 2021 - 36
IEEE Solid-States Circuits Magazine - Summer 2021 - 37
IEEE Solid-States Circuits Magazine - Summer 2021 - 38
IEEE Solid-States Circuits Magazine - Summer 2021 - 39
IEEE Solid-States Circuits Magazine - Summer 2021 - 40
IEEE Solid-States Circuits Magazine - Summer 2021 - 41
IEEE Solid-States Circuits Magazine - Summer 2021 - 42
IEEE Solid-States Circuits Magazine - Summer 2021 - 43
IEEE Solid-States Circuits Magazine - Summer 2021 - 44
IEEE Solid-States Circuits Magazine - Summer 2021 - 45
IEEE Solid-States Circuits Magazine - Summer 2021 - 46
IEEE Solid-States Circuits Magazine - Summer 2021 - 47
IEEE Solid-States Circuits Magazine - Summer 2021 - 48
IEEE Solid-States Circuits Magazine - Summer 2021 - 49
IEEE Solid-States Circuits Magazine - Summer 2021 - 50
IEEE Solid-States Circuits Magazine - Summer 2021 - 51
IEEE Solid-States Circuits Magazine - Summer 2021 - 52
IEEE Solid-States Circuits Magazine - Summer 2021 - 53
IEEE Solid-States Circuits Magazine - Summer 2021 - 54
IEEE Solid-States Circuits Magazine - Summer 2021 - 55
IEEE Solid-States Circuits Magazine - Summer 2021 - 56
IEEE Solid-States Circuits Magazine - Summer 2021 - 57
IEEE Solid-States Circuits Magazine - Summer 2021 - 58
IEEE Solid-States Circuits Magazine - Summer 2021 - 59
IEEE Solid-States Circuits Magazine - Summer 2021 - 60
IEEE Solid-States Circuits Magazine - Summer 2021 - 61
IEEE Solid-States Circuits Magazine - Summer 2021 - 62
IEEE Solid-States Circuits Magazine - Summer 2021 - 63
IEEE Solid-States Circuits Magazine - Summer 2021 - 64
IEEE Solid-States Circuits Magazine - Summer 2021 - 65
IEEE Solid-States Circuits Magazine - Summer 2021 - 66
IEEE Solid-States Circuits Magazine - Summer 2021 - 67
IEEE Solid-States Circuits Magazine - Summer 2021 - 68
IEEE Solid-States Circuits Magazine - Summer 2021 - 69
IEEE Solid-States Circuits Magazine - Summer 2021 - 70
IEEE Solid-States Circuits Magazine - Summer 2021 - 71
IEEE Solid-States Circuits Magazine - Summer 2021 - 72
IEEE Solid-States Circuits Magazine - Summer 2021 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com