IEEE Solid-States Circuits Magazine - Winter 2020 - 38
good idea to include a fast proportional
path (i.e., small delay, no decimation).
When optimizing the CDR architecture, it is important to budget
for CDR's self-generated jitter. The
budget can determine the choice
between LC versus ring VCO, and current mode logic versus CMOS clock
distribution, or may force a dedicated regulated supply for the clock
path. Power-supply-induced jitter may
sometimes be a large portion of the
self-generated jitter.
CDRs have limited locking range,
and, although gear-shifting the CDR
settings during initialization can
increase the range, it is often not
enough. Therefore, when architecting
the CDR, it is important early on to
determine the initial frequency-acquisition method (Note that frequency
acquisition was not covered in this
article.) Many systems allocate an initialization state, during which a clock
signal is sent over the data line by the
Tx and can be used by the Rx for the initial frequency acquisition. Other standards require the Rx to acquire a lock
without any special training sequence.
Examples of some CDRs with broad
capture range techniques can be found
in [24]-[26].
Clock recovery circuits often interact with the equalization circuits, as
the choice of sampling phase determines the sampled channel response
of the system. Therefore, it is important to simulate clock recovery with
data recovery.
Many of today's systems require
fast transitions between the powerdown state and the active state. In
such cases, fast wake-up CDR architectures are required. In digital CDR
architectures, frequency information
may be stored and recovered between
states; however, phase information
must still be acquired after every
state transition. Some examples of
fast wake up CDR architectures can be
found in [2].
Acknowledgments
I thank Dr. Valentin Abramzon, Dr.
Anup Jose, Prof. Sam Palermo, and
Prof. Ali Sheikholeslami for their
38
WINTER 2020
valuable feedback and help with preparing this article.
References
[1] J. Stonick, "DPLL-based clock and data recovery," ISSCC Tuts., Feb. 2010.
[2] P. Hanumolu, "Clock and data recovery architectures and circuits," ISSCC Tuts., Feb.
2015.
[3] N. Da Dalt and A. Sheikholeslami, "Understanding Jitter and Phase Noise: A Circuits
and Systems Perspective," Cambridge,
U.K.: Cambridge Univ. Press.
[4] B. Casper and F. O'Mahony, "Clocking analysis, implementation and measurement
techniques for high-speed data links-A
tutorial," IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 56, no. 1, pp. 17-39, 2009.
[5] M. Perrott, 6.976 High Speed Communication Circuits and Systems (lecture 21). Spring
2003. Massachusetts Institute of Technology: MIT OpenCourseWare. [Online]. Available: https://ocw.mit.edu
[6] Agilent Technologies, "Jitter Fundamentals: Jitter Tolerance Testing With Agilent
82250 ParBERT," Santa Clara, CA, 2003.
[Online]. Available: http://literature.cdn
.keysight.com/litweb/pdf/5989-0223en
.pdf
[7] H. Zhang, B. Jiao, Y. Liao, and G. Zhang, "A
tutorial on PAM4 signaling for 56 G serial
link," DesignCon, 2016.
[8] R. C. Walker, "Designing bang-bang PLLs
for clock and data recovery in serial data
transmission systems," in Phase-Locking
in High-Performance Systems, B. Razavi,
Ed. Piscataway, NJ: IEEE Press, 2003,
pp. 34-45.
[9] J. Lee, K. S. Kundert, and B. Razavi, "Analysis
and modeling of bang-bang clock and data
recovery circuits," IEEE J. Solid-State Circuits,
vol. 39, no. 9, pp. 1571-1580, 2004.
[10] M. Verbeke, P. Rombouts, A. Vyncke, and
G. Torfs, "Influence of jitter on limit cycles in bang-bang clock and data recovery circuits," IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 62, no. 6, pp. 1463-1471,
2015.
[11] C. Hogge, "A self correcting clock recovery circuit," J. Lightw. Technol., vol. 3, no.
6, pp. 1312-1314, 1985.
[12] J. D. H. Alexander, "Clock recovery from
random binary signals," Electron. Lett.,
vol. 11, no. 22, pp. 541-542, 1975.
[13] M. Verbeke, P. Rombouts, X. Yin, and G.
Torfs, "Inverse Alexander phase detector,"
Electron. Lett., vol. 52, no. 23, pp. 1908-
1910, 2016.
[14] K. Mueller and M. Muller, "Timing recovery in digital synchronous data receivers," IEEE Trans. Commun., vol. 24, no. 5,
pp. 516-531, 1976.
[15] V. Balan et al., "A 4.8-6.4-Gb/s serial link
for backplane applications using decision
feedback equalization," IEEE J. Solid-State
Circuits, vol. 40, no. 9, pp. 1957-1967,
2005.
[16] F. Spagna et al., "A 78 mW 11.8 Gb/s serial link transceiver with adaptive RX
equalization and baud-rate CDR in 32 nm
CMOS," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2010, pp. 366-367.
[17] R. Dokania et al., "10.5 A 5.9pJ/b 10Gb/s
serial link with unequalized MM-CDR in
14nm tri-gate CMOS," in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, 2015, pp. 1-3.
[18] P. Upadhyaya et al., "A fully adaptive 19to-56 Gb/s PAM-4 wireline transceiver
with a configurable ADC in 16 nm FinFET,"
in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2018, pp. 108-110.
IEEE SOLID-STATE CIRCUITS MAGAZINE
[19] T. Shibasaki et al., "A 56 Gb/s NRZ-electrical 247mW/lane serial-link transceiver
in 28 nm CMOS," in Proc. IEEE Int. SolidState Circuits Conf. (ISSCC), 2016, pp.
64-65.
[20] D. Oh, D. Kim, S. Kim, D. Jeong, and W.
Kim, "A 2.8 Gb/s all-digital CDR with a 10
b monotonic DCO," in Proc. IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech.
Papers, 2007, pp. 222-598.
[21] J. Kim, J. Kim, G. Kim, and D. Jeong, "A fully integrated 0.13-um CMOS 40-Gb/s Serial
Link Transceiver," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1510-1521, 2009.
[22] J. L. Sonntag and J. Stonick, "A digital
clock and data recovery architecture for
multi-gigabit/s binary links," IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1867-
1875, 2006.
[23] J. Liang, A. Sheikholeslami, H. Tamura, Y.
Ogata, and H. Yamaguchi, "6.7 A 28 Gb/s
digital CDR with adaptive loop gain for
optimum jitter tolerance," in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC), 2017,
pp. 122-123.
[24] A. Pottbacker, U. Langmann, and H. Schreiber, "A Si bipolar phase and frequency
detector IC for clock extraction up to
8 Gb/s," IEEE J. Solid-State Circuits, vol. 27,
no. 12, pp. 1747-1751, 1992.
[25] R. Inti, W. Yin, A. Elshazly, N. Sasidhar,
and P. K. Hanumolu, "A 0.5-to-2.5Gb/s
reference-less half-rate digital CDR with
unlimited frequency acquisition range
and improved input duty-cycle error tolerance," in Proc IEEE Int. Solid-State Circuits Conf. (ISSCC), 2011, pp. 438-450.
[26] S. B. Anand and B. Razavi, "A 2.75 Gb/s
CMOS clock recovery circuit with broad
capture range," in Proc IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers,
2001, pp. 214-215.
[27] A. Amirkhany, "Basics of clock and data recovery circuits," presented at the Int. SolidState Circuits Conference (ISSCC), San Francisco, CA, Feb. 17-21, 2019.
About the Author
Amir A m i rk h a ny (a.amirkhany@
samsung.com) received his B.S. degree
from Sharif University of Technology,
Tehran, Iran, his M.S. degree from the
University of California, Los Angeles,
and his Ph.D. degree from Stanford
University, California, all in electrical
engineering. He is a senior director
of engineering at Samsung Electronics, in charge of the development of
future generations of high-speed interfaces for Samsung displays. Prior to
Samsung, he was a design manager at
Ramus Inc., where he led the development of proprietary high-speed
memory interfaces. He won the best
student paper award at the 2008 IEEE
Global Communications Conference,
has authored or coauthored over 25
IEEE conference and journal papers,
and has more than 40 issued U.S. patents. He is a Senior Member of the IEEE.
https://ocw.mit.edu
http://literature.cdn.keysight.com/litweb/pdf/5989-0223EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-0223EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-0223EN.pdf
IEEE Solid-States Circuits Magazine - Winter 2020
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Winter 2020
Contents
IEEE Solid-States Circuits Magazine - Winter 2020 - Cover1
IEEE Solid-States Circuits Magazine - Winter 2020 - Cover2
IEEE Solid-States Circuits Magazine - Winter 2020 - Contents
IEEE Solid-States Circuits Magazine - Winter 2020 - 2
IEEE Solid-States Circuits Magazine - Winter 2020 - 3
IEEE Solid-States Circuits Magazine - Winter 2020 - 4
IEEE Solid-States Circuits Magazine - Winter 2020 - 5
IEEE Solid-States Circuits Magazine - Winter 2020 - 6
IEEE Solid-States Circuits Magazine - Winter 2020 - 7
IEEE Solid-States Circuits Magazine - Winter 2020 - 8
IEEE Solid-States Circuits Magazine - Winter 2020 - 9
IEEE Solid-States Circuits Magazine - Winter 2020 - 10
IEEE Solid-States Circuits Magazine - Winter 2020 - 11
IEEE Solid-States Circuits Magazine - Winter 2020 - 12
IEEE Solid-States Circuits Magazine - Winter 2020 - 13
IEEE Solid-States Circuits Magazine - Winter 2020 - 14
IEEE Solid-States Circuits Magazine - Winter 2020 - 15
IEEE Solid-States Circuits Magazine - Winter 2020 - 16
IEEE Solid-States Circuits Magazine - Winter 2020 - 17
IEEE Solid-States Circuits Magazine - Winter 2020 - 18
IEEE Solid-States Circuits Magazine - Winter 2020 - 19
IEEE Solid-States Circuits Magazine - Winter 2020 - 20
IEEE Solid-States Circuits Magazine - Winter 2020 - 21
IEEE Solid-States Circuits Magazine - Winter 2020 - 22
IEEE Solid-States Circuits Magazine - Winter 2020 - 23
IEEE Solid-States Circuits Magazine - Winter 2020 - 24
IEEE Solid-States Circuits Magazine - Winter 2020 - 25
IEEE Solid-States Circuits Magazine - Winter 2020 - 26
IEEE Solid-States Circuits Magazine - Winter 2020 - 27
IEEE Solid-States Circuits Magazine - Winter 2020 - 28
IEEE Solid-States Circuits Magazine - Winter 2020 - 29
IEEE Solid-States Circuits Magazine - Winter 2020 - 30
IEEE Solid-States Circuits Magazine - Winter 2020 - 31
IEEE Solid-States Circuits Magazine - Winter 2020 - 32
IEEE Solid-States Circuits Magazine - Winter 2020 - 33
IEEE Solid-States Circuits Magazine - Winter 2020 - 34
IEEE Solid-States Circuits Magazine - Winter 2020 - 35
IEEE Solid-States Circuits Magazine - Winter 2020 - 36
IEEE Solid-States Circuits Magazine - Winter 2020 - 37
IEEE Solid-States Circuits Magazine - Winter 2020 - 38
IEEE Solid-States Circuits Magazine - Winter 2020 - 39
IEEE Solid-States Circuits Magazine - Winter 2020 - 40
IEEE Solid-States Circuits Magazine - Winter 2020 - 41
IEEE Solid-States Circuits Magazine - Winter 2020 - 42
IEEE Solid-States Circuits Magazine - Winter 2020 - 43
IEEE Solid-States Circuits Magazine - Winter 2020 - 44
IEEE Solid-States Circuits Magazine - Winter 2020 - 45
IEEE Solid-States Circuits Magazine - Winter 2020 - 46
IEEE Solid-States Circuits Magazine - Winter 2020 - 47
IEEE Solid-States Circuits Magazine - Winter 2020 - 48
IEEE Solid-States Circuits Magazine - Winter 2020 - 49
IEEE Solid-States Circuits Magazine - Winter 2020 - 50
IEEE Solid-States Circuits Magazine - Winter 2020 - 51
IEEE Solid-States Circuits Magazine - Winter 2020 - 52
IEEE Solid-States Circuits Magazine - Winter 2020 - 53
IEEE Solid-States Circuits Magazine - Winter 2020 - 54
IEEE Solid-States Circuits Magazine - Winter 2020 - 55
IEEE Solid-States Circuits Magazine - Winter 2020 - 56
IEEE Solid-States Circuits Magazine - Winter 2020 - 57
IEEE Solid-States Circuits Magazine - Winter 2020 - 58
IEEE Solid-States Circuits Magazine - Winter 2020 - 59
IEEE Solid-States Circuits Magazine - Winter 2020 - 60
IEEE Solid-States Circuits Magazine - Winter 2020 - 61
IEEE Solid-States Circuits Magazine - Winter 2020 - 62
IEEE Solid-States Circuits Magazine - Winter 2020 - 63
IEEE Solid-States Circuits Magazine - Winter 2020 - 64
IEEE Solid-States Circuits Magazine - Winter 2020 - 65
IEEE Solid-States Circuits Magazine - Winter 2020 - 66
IEEE Solid-States Circuits Magazine - Winter 2020 - 67
IEEE Solid-States Circuits Magazine - Winter 2020 - 68
IEEE Solid-States Circuits Magazine - Winter 2020 - 69
IEEE Solid-States Circuits Magazine - Winter 2020 - 70
IEEE Solid-States Circuits Magazine - Winter 2020 - 71
IEEE Solid-States Circuits Magazine - Winter 2020 - 72
IEEE Solid-States Circuits Magazine - Winter 2020 - 73
IEEE Solid-States Circuits Magazine - Winter 2020 - 74
IEEE Solid-States Circuits Magazine - Winter 2020 - 75
IEEE Solid-States Circuits Magazine - Winter 2020 - 76
IEEE Solid-States Circuits Magazine - Winter 2020 - 77
IEEE Solid-States Circuits Magazine - Winter 2020 - 78
IEEE Solid-States Circuits Magazine - Winter 2020 - 79
IEEE Solid-States Circuits Magazine - Winter 2020 - 80
IEEE Solid-States Circuits Magazine - Winter 2020 - 81
IEEE Solid-States Circuits Magazine - Winter 2020 - 82
IEEE Solid-States Circuits Magazine - Winter 2020 - 83
IEEE Solid-States Circuits Magazine - Winter 2020 - 84
IEEE Solid-States Circuits Magazine - Winter 2020 - 85
IEEE Solid-States Circuits Magazine - Winter 2020 - 86
IEEE Solid-States Circuits Magazine - Winter 2020 - 87
IEEE Solid-States Circuits Magazine - Winter 2020 - 88
IEEE Solid-States Circuits Magazine - Winter 2020 - 89
IEEE Solid-States Circuits Magazine - Winter 2020 - 90
IEEE Solid-States Circuits Magazine - Winter 2020 - 91
IEEE Solid-States Circuits Magazine - Winter 2020 - 92
IEEE Solid-States Circuits Magazine - Winter 2020 - 93
IEEE Solid-States Circuits Magazine - Winter 2020 - 94
IEEE Solid-States Circuits Magazine - Winter 2020 - 95
IEEE Solid-States Circuits Magazine - Winter 2020 - 96
IEEE Solid-States Circuits Magazine - Winter 2020 - 97
IEEE Solid-States Circuits Magazine - Winter 2020 - 98
IEEE Solid-States Circuits Magazine - Winter 2020 - 99
IEEE Solid-States Circuits Magazine - Winter 2020 - 100
IEEE Solid-States Circuits Magazine - Winter 2020 - 101
IEEE Solid-States Circuits Magazine - Winter 2020 - 102
IEEE Solid-States Circuits Magazine - Winter 2020 - 103
IEEE Solid-States Circuits Magazine - Winter 2020 - 104
IEEE Solid-States Circuits Magazine - Winter 2020 - Cover3
IEEE Solid-States Circuits Magazine - Winter 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com