IEEE Solid-States Circuits Magazine - Winter 2021 - 47
will degrade the SNR if they fall inband. Every CA interference scenario
has to be analyzed when determining the Rx frequency plan. Consider
the example of B7 NCCB, which is illustrated in Figure 27. The UE is transmitting to the BS at 2,565 MHz and
receiving two component carriers at
2,625 [called the primary component
carrier (PCC)] and 2,685 MHz [called
the secondary component carrier or
(SCC)]. In the dual-PLL Rx architecture
described in Figure 28, the two PLLs
will contain an oscillator operating at
an N-times higher frequency, followed
by a modulo-N divider. The standard
approach would be to use N = 2, resulting in oscillator frequencies of 5,250
and 5,370 MHz. With this local oscillator (LO) generation plan, the mixing
product of the VCO_SCC and Tx falls
in band (5,250 − 2,565 = 2,685) with
the Rx_PCC, resulting in SNR degradation. Therefore, this architecture is
sensitive to any coupling path through
which the Tx signal could couple into
the Rx_PCC oscillator.
To avoid the aforementioned interference paths, in CA transceivers, judicious placement of the PLL
is required to minimize the on-chip
coupling paths. In addition, using
alternate divide ratios (other than 2)
can be considered.
Summary and Conclusion
This article covered various aspects
of a multimode cellular RFIC design
using examples. This is only the tip
of the iceberg. It is important to highlight that none of the circuit topologies discussed in this article can lay
claim to being a " globally " optimal solution. The interplay among systemcircuit codesign is what makes this an
exciting area for innovation.
Acknowledgments
I thank Prasad Gudem and Sang Won
Son for their valuable help in preparing this article.
References
[1] S. Mattison, " Distortion in cellular receivers, " ISSCC tutorials, Feb. 2012. [Online]. Available: https://resourcecenter
.sscs.ieee.org/education/short-courses/
SSCSTUT20110080.html
[2] I. Vassiluou, " Wireless transceiver system
design for modern communication standards, " ISSCC tutorials, Feb. 2013. [Online]. Available: https://resourcecenter
.sscs.ieee.org/education/short-courses/
SSCSTUT20130061.html [Online]. Available: https://resourcecenter.sscs.ieee
.org/education/short-courses/SSCSTUT
20130061.html
[3] A. Liscidini, " Fundamentals of modern RF
receivers, " ISSCC tutorials, Feb. 2015. [Online]. Available: https://resourcecenter
.sscs.ieee.org/education/short-courses/
SSCSTUT20150040.html
[4] V. Bhagavatula, " Fundamentals of wireless
transceiver circuits and architectures (from
2G to 5G), " ISSCC tutorials, presented at the
Int. Solid-State Circuits Conf. (ISSCC), 2020.
[5] J. Weldon et al., " A 1.75 GHz highly-integrated narrow-band CMOS transmitter
with harmonic-rejection mixers, " IEEE J.
Solid-State Circuits, vol. 36, no. 12, pp.
160-161, 2001. doi: 10.1109/4.972151.
[6] E. Hegazi and A. Abidi, " A 17-mW transmitter and frequency synthesizer for
900-MHz GSM fully integrated in 0.35-um
CMOS, " IEEE J. Solid-State Circuits, vol. 38,
no. 5, pp. 782-792, 2003. doi: 10.1109/
JSSC.2003.810052.
[7] P. Andreani, K. Kozmin, P. Sandrup, M. Nilsson, and T. Mattsson, " A TX VCO for WCDMA/EDGE in 90nm RF CMOS, " IEEE J. SolidState Circuits, vol. 46, no. 7, pp. 1618-1626,
2011. doi: 10.1109/JSSC.2011.2144030.
[8] A. Liscidini, L. Fanori, P. Andreani, and R.
Castello, " A 36mW/9mW power-scalable
DCO in 55nm CMOS for GSM/WCDMA frequency synthesizers, " in Proc. IEEE Int.
Solid-State Circuits Conf., 2012, pp. 354-
355. doi: 10.1109/ISSCC.2012.6177040.
[9] G. Li, L. Liu, Y. Tang, and E. Afshari, " A lowphase-noise wide-tuning-range oscillator
based on resonant mode switching, " IEEE J.
Solid-State Circuits, vol. 47, no. 6, pp. 1295-
1308, 2012. doi: 10.1109/JSSC.2012.2190185.
[10] H. Darabi et al., " A quad-band GSM/GPRS/
EDGE SoC in 65 nm CMOS, " IEEE J. SolidState Circuits, vol. 46, no. 4, pp. 870-882,
2013. doi: 10.1109/JSSC.2011.2109432.
[11] I. S. Lu et al., " A SAW less GSM/GPRS/EDGE
receiver embedded in a 65nm CMOS SoC, "
in Proc. ISSCC Dig. Tech. Papers, 2011, pp.
364-365.
[12] D. B. Leeson, " A simple model for feedback
oscillator noise spectrum, " Proc. IEEE, vol.
54, no. 2, pp. 329-330, 1966. doi: 10.1109/
PROC.1966.4682.
[13] C. Jones et al., " Direct-conversion WCDMA
transmitter with −163dBc/Hz noise at
190MHz offset, " in Proc. ISSCC Dig. Tech.
Papers, 2007, pp. 336-337.
[14] A. Mirzaei and H. Darabi, " A low-power
WCDMA transmitter with an integrated
notch filter, " IEEE J. Solid-State Circuits,
vol. 43, no. 12, pp. 2868-2881, 2008. doi:
10.1109/JSSC.2008.2005698.
[15] X. He and J. V. Sindren, " A low-voltage,
low-EVM, SAW-less WCDMA transmitter
using direct quadrature voltage modulation, " IEEE J. Solid-State Circuits, vol. 44,
no. 12, pp. 3448-3458, Dec. 2009. doi:
10.1109/JSSC.2009.2032495.
[16] O. Oliaei et al., " A multiband multimode
transmitter without driver amplifier, "
in Proc. ISSCC Dig. Tech. Papers, 2012, pp.
164-165. doi: 10.1109/ISSCC.2012.6176960.
[17] M. Ingels, Y. Furuta, X. Zhang, S. Cha, and
J. Craninckx, " A multiband 40nm CMOS LTE
SAW-less modulator with −60dBc C-IM3, "
in Proc. ISSCC Dig. Tech. Papers, 2015, pp.
338-339. doi: 10.1109/ISSCC.2013.6487760.
[18] T. Georgantas et al., " A 13mm2 40nm
multiband GSM/EDGE/HSPA+/TDSCDMA/
LTE transceiver, " in Proc. ISSS Dig. Tech.
Papers, 2015, pp. 160-161. doi: 10.1109/
ISSCC.2015.7062975.
[19] Y.-H. Chen, N. Fong, B. Xu, and C. Wang,
" An LTE SAW-less transmitter using 33%
duty-cycle LO signals for harmonic suppression, " in Proc. IEEE ISSCC Dig. Tech.
Papers, 2015, pp.172-173. doi: 10.1109/
ISSCC.2015.7062981.
[20] B. Mohammadi et al., " A rel-12 2G/3G/LTEadvanced 2CC transmitter, " IEEE J. SolidState Circuits, vol. 51, no. 5, pp. 1080-1095,
2016. doi: 10.1109/JSSC.2015.2511167.
[21] S. Seth et al., " A dynamically biased multiband 2G/3G/4G cellular transmitter in
28nm CMOS, " IEEE J. Solid-State Circuits,
vol. 51, no. 5, pp. 1096-1108, 2016. doi:
10.1109/JSSC.2015.2510023.
[22] M. Mikhemar et al., " A rel-12 2G/3G/LTE-advanced 3CC cellular receiver, " IEEE J. SolidState Circuits, vol. 51, no. 5, pp. 1066-1079,
2016. doi: 10.1109/JSSC.2016.2514438.
[23] M.-D. Tsai et al., " A 4G/5G cellular transmitter in 12nm FinFET with harmonic rejection, " in Proc. ISSCC Dig. Tech. Papers, 2020,
pp. 182-184. doi: 10.1109/ISSCC19947.2020
.9063145.
[24] V. Bhagavatula et al., " A SAW less reconfigurable multi-mode transmitter with a voltage-mode harmonic-reject mixer in 14nm
FinFET CMOS, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2017, pp. 220-221.
doi: 10.1109/ISSCC.2017.7870340.
[25] C. Chiu et al., " A 40nm low-power transceiver for LTE-A carrier-aggregation, " in
Proc. ISSCC Dig. Tech. Papers, 2017, pp.130-
131. doi: 10.1109/ISSCC.2017.7870295.
[26] Q. Liu et al., " A 1.4-to-2.7GHz high-efficiency RF transmitter with an automatic 3FLOsuppression tracking-notch-filter mixer
supporting HPUE in 14nm FinFET CMOS, " in
Proc. ISSCC Dig. Tech. Papers, Feb. 2018, pp.
172-174. doi: 10.1109/ISSCC.2018.8310239.
[27] J. Lee et al., " A sub-6-GHz 5G new radio
RF transceiver supporting EN-DC with
3.15-Gb/s DL and 1.27-Gb/s UL in 14-nm
FinFET CMOS, " IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 3541-3552. doi:
10.1109/JSSC.2019.2938132.
About the Author
Venumadhav Bhagavatula (bvenum@
gmail.com) received his B.E. degree in
electronics and communication from
the University of Delhi, New Delhi, India; his M.Tech. degree in electronic
design technology from the Indian Institute of Science, Bangalore; and his
Ph.D. degree in electrical engineering
from the University of Washington, Seattle, in 2005, 2007, and 2013, respectively. Since 2014, he has been with the
Advanced Circuit Design group at Samsung Semiconductors Inc., San Jose,
California, USA. His research interests
include radio-frequency/millimeterwave and low-power mixed signal circuits. He currently serves as a technical
program committee member for the
IEEE International Solid-State Circuits
Conference and an IEEE Solid-State Circuits Society Distinguished Lecturer.
IEEE SOLID-STATE CIRCUITS MAGAZINE
W I N T E R 2 0 2 1
47
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20130061.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20130061.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20130061.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20130061.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20130061.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20130061.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20150040.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20150040.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20150040.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20110080.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20110080.html
https://resourcecenter.sscs.ieee.org/education/short-courses/SSCSTUT20110080.html
IEEE Solid-States Circuits Magazine - Winter 2021
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Winter 2021
Contents
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover1
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover2
IEEE Solid-States Circuits Magazine - Winter 2021 - Contents
IEEE Solid-States Circuits Magazine - Winter 2021 - 2
IEEE Solid-States Circuits Magazine - Winter 2021 - 3
IEEE Solid-States Circuits Magazine - Winter 2021 - 4
IEEE Solid-States Circuits Magazine - Winter 2021 - 5
IEEE Solid-States Circuits Magazine - Winter 2021 - 6
IEEE Solid-States Circuits Magazine - Winter 2021 - 7
IEEE Solid-States Circuits Magazine - Winter 2021 - 8
IEEE Solid-States Circuits Magazine - Winter 2021 - 9
IEEE Solid-States Circuits Magazine - Winter 2021 - 10
IEEE Solid-States Circuits Magazine - Winter 2021 - 11
IEEE Solid-States Circuits Magazine - Winter 2021 - 12
IEEE Solid-States Circuits Magazine - Winter 2021 - 13
IEEE Solid-States Circuits Magazine - Winter 2021 - 14
IEEE Solid-States Circuits Magazine - Winter 2021 - 15
IEEE Solid-States Circuits Magazine - Winter 2021 - 16
IEEE Solid-States Circuits Magazine - Winter 2021 - 17
IEEE Solid-States Circuits Magazine - Winter 2021 - 18
IEEE Solid-States Circuits Magazine - Winter 2021 - 19
IEEE Solid-States Circuits Magazine - Winter 2021 - 20
IEEE Solid-States Circuits Magazine - Winter 2021 - 21
IEEE Solid-States Circuits Magazine - Winter 2021 - 22
IEEE Solid-States Circuits Magazine - Winter 2021 - 23
IEEE Solid-States Circuits Magazine - Winter 2021 - 24
IEEE Solid-States Circuits Magazine - Winter 2021 - 25
IEEE Solid-States Circuits Magazine - Winter 2021 - 26
IEEE Solid-States Circuits Magazine - Winter 2021 - 27
IEEE Solid-States Circuits Magazine - Winter 2021 - 28
IEEE Solid-States Circuits Magazine - Winter 2021 - 29
IEEE Solid-States Circuits Magazine - Winter 2021 - 30
IEEE Solid-States Circuits Magazine - Winter 2021 - 31
IEEE Solid-States Circuits Magazine - Winter 2021 - 32
IEEE Solid-States Circuits Magazine - Winter 2021 - 33
IEEE Solid-States Circuits Magazine - Winter 2021 - 34
IEEE Solid-States Circuits Magazine - Winter 2021 - 35
IEEE Solid-States Circuits Magazine - Winter 2021 - 36
IEEE Solid-States Circuits Magazine - Winter 2021 - 37
IEEE Solid-States Circuits Magazine - Winter 2021 - 38
IEEE Solid-States Circuits Magazine - Winter 2021 - 39
IEEE Solid-States Circuits Magazine - Winter 2021 - 40
IEEE Solid-States Circuits Magazine - Winter 2021 - 41
IEEE Solid-States Circuits Magazine - Winter 2021 - 42
IEEE Solid-States Circuits Magazine - Winter 2021 - 43
IEEE Solid-States Circuits Magazine - Winter 2021 - 44
IEEE Solid-States Circuits Magazine - Winter 2021 - 45
IEEE Solid-States Circuits Magazine - Winter 2021 - 46
IEEE Solid-States Circuits Magazine - Winter 2021 - 47
IEEE Solid-States Circuits Magazine - Winter 2021 - 48
IEEE Solid-States Circuits Magazine - Winter 2021 - 49
IEEE Solid-States Circuits Magazine - Winter 2021 - 50
IEEE Solid-States Circuits Magazine - Winter 2021 - 51
IEEE Solid-States Circuits Magazine - Winter 2021 - 52
IEEE Solid-States Circuits Magazine - Winter 2021 - 53
IEEE Solid-States Circuits Magazine - Winter 2021 - 54
IEEE Solid-States Circuits Magazine - Winter 2021 - 55
IEEE Solid-States Circuits Magazine - Winter 2021 - 56
IEEE Solid-States Circuits Magazine - Winter 2021 - 57
IEEE Solid-States Circuits Magazine - Winter 2021 - 58
IEEE Solid-States Circuits Magazine - Winter 2021 - 59
IEEE Solid-States Circuits Magazine - Winter 2021 - 60
IEEE Solid-States Circuits Magazine - Winter 2021 - 61
IEEE Solid-States Circuits Magazine - Winter 2021 - 62
IEEE Solid-States Circuits Magazine - Winter 2021 - 63
IEEE Solid-States Circuits Magazine - Winter 2021 - 64
IEEE Solid-States Circuits Magazine - Winter 2021 - 65
IEEE Solid-States Circuits Magazine - Winter 2021 - 66
IEEE Solid-States Circuits Magazine - Winter 2021 - 67
IEEE Solid-States Circuits Magazine - Winter 2021 - 68
IEEE Solid-States Circuits Magazine - Winter 2021 - 69
IEEE Solid-States Circuits Magazine - Winter 2021 - 70
IEEE Solid-States Circuits Magazine - Winter 2021 - 71
IEEE Solid-States Circuits Magazine - Winter 2021 - 72
IEEE Solid-States Circuits Magazine - Winter 2021 - 73
IEEE Solid-States Circuits Magazine - Winter 2021 - 74
IEEE Solid-States Circuits Magazine - Winter 2021 - 75
IEEE Solid-States Circuits Magazine - Winter 2021 - 76
IEEE Solid-States Circuits Magazine - Winter 2021 - 77
IEEE Solid-States Circuits Magazine - Winter 2021 - 78
IEEE Solid-States Circuits Magazine - Winter 2021 - 79
IEEE Solid-States Circuits Magazine - Winter 2021 - 80
IEEE Solid-States Circuits Magazine - Winter 2021 - 81
IEEE Solid-States Circuits Magazine - Winter 2021 - 82
IEEE Solid-States Circuits Magazine - Winter 2021 - 83
IEEE Solid-States Circuits Magazine - Winter 2021 - 84
IEEE Solid-States Circuits Magazine - Winter 2021 - 85
IEEE Solid-States Circuits Magazine - Winter 2021 - 86
IEEE Solid-States Circuits Magazine - Winter 2021 - 87
IEEE Solid-States Circuits Magazine - Winter 2021 - 88
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover3
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com