IEEE Solid-States Circuits Magazine - Winter 2021 - 56

Thanks to the inherited DSP capability and
technology scaling, there are plenty of new
opportunities for this mostly digital PLL
topology to excel beyond traditional analog
PLL architecture.
As indicated in Figure 8(b), a predetermined dither signal is applied to the
input reference buffer, allowing a least
mean square (LMS) algorithm to learn
the transfer function of the two coupling paths. It then enables the pulling
compensation signals to be injected
at the input and output of the digital
loop filter and mitigates the pulling
effect. In short, this architecture facilitates a more robust frequency synthesizer and can be useful for future
SoC integration.

Conclusion
In this review article, we have examined the design basics and trends
of digital PLL architectures. Thanks
to the inherited DSP capability and
technology scaling, there are plenty
of new opportunities for this mostly
digital PLL topology to excel beyond
traditional analog PLL architecture. It
is very likely that we will continue to
witness more exciting digital PLL techniques in the years to come.

References

[1]	 C. -M. Hsu, M. Z. Straayer, and M. H. Perrott,
" A low-noise, wide-BW 3.6GHz digital fractional-N frequency synthesizer with a noiseshaping time-to-digital converter and quantization noise cancellation, " in Proc. IEEE Int.
Solid-State Circuits Conf. - Dig. Tech. Papers,
2008, pp. 340-617. doi: 10.1109/ISSCC.2008.
4523196.
[2]	 P.-Y. Wang, J.-C. Zhan, H.-H. Chang, and H.S. Chang, " A digital intensive fractional-N
PLL and all-digital self-calibration schemes, "
IEEE J. Solid-State Circuits, vol. 44, no. 8, pp.
2182-2192, 2009. doi: 10.1109/JSSC.2009.
2022304.
[3]	 R. B. Staszewski et al., " All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS, "
IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.
2278-2291, 2004. doi: 10.1109/JSSC.2004.
836345.
[4]	 M. S.-W. Chen, D. Su, and S. Mehta, " A calibration-free 800MHz fractional-N digital PLL
with embedded TDC, " in Proc. 2010 IEEE Int.
Solid-State Circuits Conf. - (ISSCC), pp. 472-
473. doi: 10.1109/ISSCC.2010.5433844.
[5]	 C. Weltin-Wu, E. Temporiti, D. Baldi, M. Cusmai, and F. Svelto, " A 3.5GHz wideband AD-

56	

W I N T E R 2 0 2 1	

PLL with fractional spur suppression through
TDC dithering and feedforward compensation, " in Proc. 2010 IEEE Int. Solid-State Circuits
Conf. - (ISSCC), pp. 468-469. doi: 10.1109/
ISSCC.2010.5433846.
[6]	 C. R. Ho and M. S.-W. Chen, " A fractional-N
digital PLL with background dither noise
cancellation loop achieving <-62.5dBc worstcase near-carrier fractional spur in 65nm
CMOS, " in Proc. IEEE Int. Solid - State Circuits
Conf. - (ISSCC), Feb. 2018, pp. 394-396. doi:
10.1109/ISSCC.2018.8310350.
[7]	 R. B. Staszewski et al., " Spur-free all-digital
PLL in 65nm for mobile phones, " in Proc.
2011 IEEE Int. Solid-State Circuits Conf., pp.
52-54. doi: 10.1109/ISSCC.2011.5746215.
[8]	 M. Lee, M. E. Heidari, and A. A. Abidi, " A low
noise, wideband digital phase-locked loop
based on a new time-to-digital converter with
subpicosecond resolution, " in Proc. 2008 IEEE
Symp. VLSI Circuits, pp. 112-113. doi: 10.1109/
VLSIC.2008.4585972.
[9]	 J. Borremans, K. Vengattaramane, V. Giannini, and J. Craninckx, " A 86MHz-to-12GHz
digital-intensive phase-modulated fractional-N PLL using a 15pJ/Shot 5ps TDC in 40nm
digital CMOS, " in Proc. 2010 IEEE Int. Solid
- State Circuits Conf. - (ISSCC), pp. 480-481.
doi: 10.1109/ISSCC.2010.5433840.
[10]	W. Grollitsch, R. Nonis, and N. Da Dalt, " A
1.4psrms-period-jitter TDC-less fractional-N
digital PLL with digitally controlled ring oscillator in 65nm CMOS, " in Proc. 2010 IEEE
Int. Solid - State Circuits Conf. - (ISSCC), pp.
478-479. doi: 10.1109/ISSCC.2010.5433839.
[11]	T. Tokairin, M. Okada, M. Kitsunezuka, T.
Maeda, and M. Fukaishi, " A 2.1-to-2.8GHz
all-digital frequency synthesizer with a timewindowed TDC, " in Proc. 2010 IEEE Int. Solid
- State Circuits Conf. - (ISSCC), pp. 470-471.
doi: 10.1109/ISSCC.2010.5433843.
[12]	M. S.-W. Chen, D. Su, and S. Mehta, " A calibration-free 800MHz fractional-N digital PLL
with embedded TDC, " IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2819-2827, Dec.
2010. doi: 10.1109/JSSC.2010.2074950.
[13]	K. Takinami et al., " A rotary-travelingwave-oscillator-based all-digital PLL with a
32-phase embedded phase-to-digital converter in 65nm CMOS, " in Proc. 2011 IEEE Int. Solid-State Circuits Conf. - Dig. Tech. Papers, pp.
100-102. doi: 10.1109/ISSCC.2011.5746237.
[14]	X. Chen et al., " Analysis and design of an
ultra-low-power bluetooth low-energy transmitter with ring oscillator-based ADPLL and
4× frequency edge combiner, " IEEE J. SolidState Circuits, vol. 54, no. 5, pp. 1339-1350,
May 2019. doi: 10.1109/JSSC.2019.2896404.
[15]	C. R. Ho and M. S.-W. Chen, " A Fractional-N
DPLL with Calibration-free Multi-phase Injection-locked TDC and Adaptive Single-tone
Spur Cancellation, " IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 63, no. 8, pp. 1111-1122,
Aug. 2016. doi: 10.1109/TCSI.2016.2577858.
[16]	M. Z. Straayer and M. H. Perrott, " An efficient
high-resolution 11-bit noise-shaping multipath gated ring oscillator TDC, " in Proc.
2008 IEEE Symp. VLSI Circuits, pp. 82-83.
doi: 10.1109/VLSIC.2008.4585960.

IEEE SOLID-STATE CIRCUITS MAGAZINE	

[17]	S. Henzler, S. Koeppe, W. Kamp, H. Mulatz,
and D. Schmitt-Landsiedel, " 90nm 4.7psresolution 0.7-LSB single-shot precision and
19pJ-per-shot local passive interpolation
time-to-digital converter with on-chip characterization, " in Proc. 2008 IEEE Int. SolidState Circuits Conf. - Dig. Tech. Papers, pp.
548-635. doi: 10.1109/ISSCC.2008.4523300.
[18]	S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice Hall, 1996.
[19]	C. R. Ho and M. S.-W. Chen, " A digital PLL with
feedforward multi-tone spur cancelation
loop achieving <-73dBc fractional spur and
<-110dBc reference spur in 65nm CMOS, " in
Proc. IEEE Int. Solid - State Circuits Conf. (ISSCC), Feb. 2016, pp. 190-191. doi: 10.1109/
ISSCC.2016.7417971.
[20]	C. R. Ho and M. S.-W. Chen, " A digital PLL with
feedforward multi-tone spur cancelation
loop achieving <-73dBc fractional spur and
<-110dBc reference spur in 65nm CMOS, "
IEEE J. Solid-State Circuits, vol. 51, no. 12, pp.
3216-3230. Dec. 2016. doi: 10.1109/JSSC.
2016.2596770.
[21]	A. Mirzaei and H. Darabi, " Pulling mitigation
in wireless transmitters, " IEEE J. Solid-State
Circuits, vol. 49, no. 9, pp. 1958-1970, Sept.
2014. doi: 10.1109/JSSC.2014.2325556.
[22]	G. Puma and C. Carbonne, " Mitigation of oscillator pulling in SoCs, " IEEE J. Solid-State
Circuits, vol. 51, no. 2, pp. 348-356, Feb.
2016. doi: 10.1109/JSSC.2015.2499243.
[23]	C. R. Ho and M. S.-W. Chen, " Interference-induced DCO spur mitigation for digital phase
locked loop in 65-nm CMOS, " in Proc. ESSCIRC
Conf. 2016: 42nd Euro. Solid-State Circuits
Conf., pp. 213-216. doi: 10.1109/ESSCIRC.
2016.7598280.
[24]	 C. R. Ho and M. S.-W. Chen, " A digital frequency synthesizer with dither-assisted pulling
mitigation for simultaneous DCO and reference path coupling, " in Proc. IEEE Int. Solid
- State Circuits Conf. - (ISSCC), Feb. 2018, pp.
254-256. doi: 10.1109/ISSCC.2018.8310280.

About the Author
Mike Shuo-Wei Chen (swchen@usc
.edu) received his B.S. degree from
National Taiwan University, Taipei, in
1998 and his M.S. and Ph.D. degrees
from the University of California,
Berkeley, in 2002 and 2006, all in electrical engineering. He is an associate
professor in the ECE Department at
the University of Southern California
(USC), Los Angeles, California USA. As a
graduate student researcher, he proposed and demonstrated the asynchronous successive approximation register
analog-to-digital converter architecture,
which has been adopted today for lowpower, high-speed analog-to-digital
conversion products in industry. At
USC, he leads an analog mixed-signal
circuit group, focusing on data converters, radio-frequency synthesizers,
transceiver, and nonuniformly sampled
circuits and systems.




IEEE Solid-States Circuits Magazine - Winter 2021

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Winter 2021

Contents
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover1
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover2
IEEE Solid-States Circuits Magazine - Winter 2021 - Contents
IEEE Solid-States Circuits Magazine - Winter 2021 - 2
IEEE Solid-States Circuits Magazine - Winter 2021 - 3
IEEE Solid-States Circuits Magazine - Winter 2021 - 4
IEEE Solid-States Circuits Magazine - Winter 2021 - 5
IEEE Solid-States Circuits Magazine - Winter 2021 - 6
IEEE Solid-States Circuits Magazine - Winter 2021 - 7
IEEE Solid-States Circuits Magazine - Winter 2021 - 8
IEEE Solid-States Circuits Magazine - Winter 2021 - 9
IEEE Solid-States Circuits Magazine - Winter 2021 - 10
IEEE Solid-States Circuits Magazine - Winter 2021 - 11
IEEE Solid-States Circuits Magazine - Winter 2021 - 12
IEEE Solid-States Circuits Magazine - Winter 2021 - 13
IEEE Solid-States Circuits Magazine - Winter 2021 - 14
IEEE Solid-States Circuits Magazine - Winter 2021 - 15
IEEE Solid-States Circuits Magazine - Winter 2021 - 16
IEEE Solid-States Circuits Magazine - Winter 2021 - 17
IEEE Solid-States Circuits Magazine - Winter 2021 - 18
IEEE Solid-States Circuits Magazine - Winter 2021 - 19
IEEE Solid-States Circuits Magazine - Winter 2021 - 20
IEEE Solid-States Circuits Magazine - Winter 2021 - 21
IEEE Solid-States Circuits Magazine - Winter 2021 - 22
IEEE Solid-States Circuits Magazine - Winter 2021 - 23
IEEE Solid-States Circuits Magazine - Winter 2021 - 24
IEEE Solid-States Circuits Magazine - Winter 2021 - 25
IEEE Solid-States Circuits Magazine - Winter 2021 - 26
IEEE Solid-States Circuits Magazine - Winter 2021 - 27
IEEE Solid-States Circuits Magazine - Winter 2021 - 28
IEEE Solid-States Circuits Magazine - Winter 2021 - 29
IEEE Solid-States Circuits Magazine - Winter 2021 - 30
IEEE Solid-States Circuits Magazine - Winter 2021 - 31
IEEE Solid-States Circuits Magazine - Winter 2021 - 32
IEEE Solid-States Circuits Magazine - Winter 2021 - 33
IEEE Solid-States Circuits Magazine - Winter 2021 - 34
IEEE Solid-States Circuits Magazine - Winter 2021 - 35
IEEE Solid-States Circuits Magazine - Winter 2021 - 36
IEEE Solid-States Circuits Magazine - Winter 2021 - 37
IEEE Solid-States Circuits Magazine - Winter 2021 - 38
IEEE Solid-States Circuits Magazine - Winter 2021 - 39
IEEE Solid-States Circuits Magazine - Winter 2021 - 40
IEEE Solid-States Circuits Magazine - Winter 2021 - 41
IEEE Solid-States Circuits Magazine - Winter 2021 - 42
IEEE Solid-States Circuits Magazine - Winter 2021 - 43
IEEE Solid-States Circuits Magazine - Winter 2021 - 44
IEEE Solid-States Circuits Magazine - Winter 2021 - 45
IEEE Solid-States Circuits Magazine - Winter 2021 - 46
IEEE Solid-States Circuits Magazine - Winter 2021 - 47
IEEE Solid-States Circuits Magazine - Winter 2021 - 48
IEEE Solid-States Circuits Magazine - Winter 2021 - 49
IEEE Solid-States Circuits Magazine - Winter 2021 - 50
IEEE Solid-States Circuits Magazine - Winter 2021 - 51
IEEE Solid-States Circuits Magazine - Winter 2021 - 52
IEEE Solid-States Circuits Magazine - Winter 2021 - 53
IEEE Solid-States Circuits Magazine - Winter 2021 - 54
IEEE Solid-States Circuits Magazine - Winter 2021 - 55
IEEE Solid-States Circuits Magazine - Winter 2021 - 56
IEEE Solid-States Circuits Magazine - Winter 2021 - 57
IEEE Solid-States Circuits Magazine - Winter 2021 - 58
IEEE Solid-States Circuits Magazine - Winter 2021 - 59
IEEE Solid-States Circuits Magazine - Winter 2021 - 60
IEEE Solid-States Circuits Magazine - Winter 2021 - 61
IEEE Solid-States Circuits Magazine - Winter 2021 - 62
IEEE Solid-States Circuits Magazine - Winter 2021 - 63
IEEE Solid-States Circuits Magazine - Winter 2021 - 64
IEEE Solid-States Circuits Magazine - Winter 2021 - 65
IEEE Solid-States Circuits Magazine - Winter 2021 - 66
IEEE Solid-States Circuits Magazine - Winter 2021 - 67
IEEE Solid-States Circuits Magazine - Winter 2021 - 68
IEEE Solid-States Circuits Magazine - Winter 2021 - 69
IEEE Solid-States Circuits Magazine - Winter 2021 - 70
IEEE Solid-States Circuits Magazine - Winter 2021 - 71
IEEE Solid-States Circuits Magazine - Winter 2021 - 72
IEEE Solid-States Circuits Magazine - Winter 2021 - 73
IEEE Solid-States Circuits Magazine - Winter 2021 - 74
IEEE Solid-States Circuits Magazine - Winter 2021 - 75
IEEE Solid-States Circuits Magazine - Winter 2021 - 76
IEEE Solid-States Circuits Magazine - Winter 2021 - 77
IEEE Solid-States Circuits Magazine - Winter 2021 - 78
IEEE Solid-States Circuits Magazine - Winter 2021 - 79
IEEE Solid-States Circuits Magazine - Winter 2021 - 80
IEEE Solid-States Circuits Magazine - Winter 2021 - 81
IEEE Solid-States Circuits Magazine - Winter 2021 - 82
IEEE Solid-States Circuits Magazine - Winter 2021 - 83
IEEE Solid-States Circuits Magazine - Winter 2021 - 84
IEEE Solid-States Circuits Magazine - Winter 2021 - 85
IEEE Solid-States Circuits Magazine - Winter 2021 - 86
IEEE Solid-States Circuits Magazine - Winter 2021 - 87
IEEE Solid-States Circuits Magazine - Winter 2021 - 88
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover3
IEEE Solid-States Circuits Magazine - Winter 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com