IEEE Solid-States Circuits Magazine - Winter 2022 - 53

References
[1] B. Murmann, " ADC Performance Survey
1997-2021. " Accessed: Aug. 2021. [Online].
Available: https://web.stanford.edu/
~murmann/adcsurvey.html
[2] B. Murmann, " Limits on ADC power dissipation, "
in Analog Circuit Design, M. Steyaert,
J. Huijsing, and A. van Roermund Eds.
Berlin, Germany: Springer-Verlag, 2006.
[3] T. Sundström, B. Murmann, and C. Svensson,
" Power dissipation bounds for highspeed
nyquist analog-to-digital converters, "
IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 56, no. 3, pp. 509-518, Mar.
2009, doi: 10.1109/TCSI.2008.2002548.
[4] A. Varzaghani et al., " A 10.3-GS/s, 6-bit
Flash ADC for 10G Ethernet Applications, "
IEEE J. Solid-State Circuits, vol. 48, no. 12,
pp. 3038-3048, Dec. 2013, doi: 10.1109/
JSSC.2013.2279419.
[5] V. H.-C. Chen and L. Pileggi, " A 69.5 mW
20 GS/s 6b time-interleaved ADC with embedded
time-to-digital calibration in 32
nm CMOS SOI, " IEEE J. Solid-State Circuits,
vol. 49, no. 12, pp. 2891-2901, Dec. 2014,
doi: 10.1109/JSSC.2014.2364043.
[6] W. Sansen, " Analog CMOS from 5 micrometer
to 5 nanometer, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), San Francisco,
CA, USA, Feb. 2015, pp. 1-6, doi:
10.1109/ISSCC.2015.7062848.
[7] M. J. M. Pelgrom, A. C. Duinmaijer, and A.
P. Welbers, " Matching properties of MOS
transistors, " IEEE J. Solid-State Circuits,
vol. 24, no. 5, pp. 1433-1439, 1989, doi:
10.1109/JSSC.1989.572629.
[8] M. J. Kramer, E. Janssen, K. Doris, and
B. Murmann, " A 14b 35 MS/s SAR ADC
achieving 75 dB SNDR and 99 dB SFDR
with loop-embedded input buffer in 40
nm CMOS, " IEEE J. Solid-State Circuits, vol.
50, no. 12, pp. 2891-2900, Dec. 2015, doi:
10.1109/JSSC.2015.2463110.
[9] A. T. Ramkaj, M. Strackx, M. S. J. Steyaert,
and F. Tavernier, " A 1.25-GS/s 7b SAR ADC
with 36.4-dB SNDR at 5 GHz using switchbootstrapping,
USPC DAC and triple-tail
comparator in 28-nm CMOS, " IEEE J. SolidState
Circuits, vol. 53, no. 7, pp. 1889-1901,
Jul. 2018, doi: 10.1109/JSSC.2018.2822823.
[10] V. Hariprasath, J. Guerber, S.-H. Lee, and
U.-K. Moon, " Merged capacitor switching
based SAR ADC with highest switching
energy-efficiency, " Electron. Lett., vol. 46,
no. 9, pp. 620-621, May 2010, doi: 10.1049/
el.2010.0706.
[11] S. Devarajan et al., " A 12-b 10-GS/s interleaved
pipeline ADC in 28-nm CMOS technology, "
IEEE J. Solid-State Circuits, vol.
52, no. 12, pp. 3204-3218, Dec. 2017, doi:
10.1109/JSSC.2017.2747758.
[12] A. M. A. Ali et al., " A 12-b 18-GS/s RF sampling
ADC with an integrated wideband
track-and-hold amplifier and background
calibration, " IEEE J. Solid-State Circuits,
vol. 55, no. 12, pp. 3210-3224, Dec. 2020,
doi: 10.1109/JSSC.2020.3023882.
[13] Y. Chiu, P. R. Gray, and B. Nikolic, " A 14-b
12-MS/s CMOS pipeline ADC with over
100-dB SFDR, " IEEE J. Solid-State Circuits,
vol. 39, no. 12, pp. 2139-2151, Dec. 2004,
doi: 10.1109/JSSC.2004.836232.
[14] B. Verbruggen et al., " A 2.6mW 6b 2.2GS/s
4-times Interleaved fully dynamic pipelined
ADC in 40nm digital CMOS, " in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC),
San Francisco, CA, USA, Feb. 2010, pp. 296-
297, doi: 10.1109/ISSCC.2010.5433925.
[15] F. van der Goes et al., " A 1.5 mW 68 dB SNDR
80 MS/s 2x Interleaved Pipelined SAR ADC
in 28 nm CMOS, " IEEE J. Solid-State Circuits,
vol. 49, no. 12, pp. 2835-2845, Dec.
2014, doi: 10.1109/JSSC.2014.2361774.
[16] M. Brandolini et al., " A 5 GS/s 150 mW 10
b SHA-less pipelined/SAR hybrid ADC for
direct-sampling systems in 28 nm CMOS, "
IEEE J. Solid-State Circuits, vol. 50, no. 12,
pp. 2922-2934, Dec. 2015, doi: 10.1109/
JSSC.2015.2464684.
[17] B. Vaz et al., " A 13b 5GS/s ADC with time-interleaved
chopping calibration in 16nm FinFET, "
in Proc. IEEE Symp. VLSI Circuits (VLSI Circuits),
Honolulu, Hawaii, Jun. 2018, pp. C99-
C100, doi: 10.1109/VLSIC.2018.8502306.
[18] A. T. Ramkaj et al., " A 5-GS/s 158.6-mW 9.4ENOB
passive-sampling time-interleaved threestage
pipelined-SAR ADC with analog-digital
corrections in 28-nm CMOS, " IEEE J. SolidState
Circuits, vol. 55, no. 6, pp. 1553-1564,
Jun. 2020, doi: 10.1109/JSSC.2019.2960476.
About the Authors
Athanasios Ramkaj (aramkaj@stanford
.edu) received his M.Sc. degree (cum
laude) in electrical engineering from
the Technische Universiteit Delft,
The Netherlands, and his Ph.D. degree
(summa cum laude) in electrical
engineering from the Katholieke
Universiteit Leuven, Belgium, in
2014 and 2021, respectively. He is
currently a postdoctoral researcher
with Stanford University, Stanford,
California, 94305, USA. From 2013 to
2014, he was an intern with NXP Semiconductors,
Eindhoven, The Netherlands,
investigating gigahertz-range
analog-to-digital converters (ADCs).
In 2019, he interned with Analog Devices,
Wilmington, Massachusetts,
USA, researching RF ADC bandwidth
extension solutions. He received the
2021 Analog Devices Outstanding
Student Designer Award and the 2020
IEEE SSCS Predoctoral Achievement
Award. His main research interests
include high-speed/bandwidth highresolution
RF-sampling ADCs, highspeed
analog/mixed-signal circuits,
and ultra-wideband front ends.
Marcel J.M. Pelgrom received his
M.Sc. and Ph.D. degrees from Twente
University, The Netherlands. In 1979
he joined Philips Research, where he
headed the high-speed analog-to-digital
conversion team and served seven
years as the department head for
mixed-signal electronics research.
His research covered metal-oxide
semiconductor mismatch, basic circuits,
and analog-to-digital converters.
The most cited article in the
IEEE Solid-State Circuits Magazine is
his article on metal-oxide semiconductor
matching properties. Until
2013, he was a member of the technical
staff of NXP Semiconductors,
involved in the research on variability,
and advanced conversion techniques.
In 2003 and 2014, he spent
a sabbatical at Stanford University,
Stanford, California, USA. He was the
2017 IEEE Gustav R. Kirchhoff Award
recipient. At present, he is an independent
consultant.
Michiel S.J. Steyaert received his
M.Sc. degree in electrical and mechanical
engineering and his Ph.D. degree
in electronics from the Katholieke
Universiteit, Belgium, in 1983 and
1987, respectively. In 1988, he was a
visiting professor with the University
of California, Los Angeles, California,
USA. He was a research associate in
1989, a senior research associate in
1992, and a research director in 1996,
with the Department of Electrical Engineering,
ESAT. From 2005 until 2012,
he was the Electrical Engineering Department
chair, where he is currently
a full professor. His research lies with
high-performance, high-frequency
analog circuits for telecommunication
systems and analog signal processing.
He is the only European researcher
who has received both the 50th and
the 60th Anniversary Top ISSCC Contributors
Award in 2003 and 2013.
Filip Tavernier (filip.tavernier@
esat.kuleuven.be) received his M.Sc.
degree in electrical engineering and
his Ph.D. degree in engineering science
from the Katholieke Universiteit
(KU Leuven), Belgium, in 2005 and
2011, respectively. From 2011 to 2014,
he was a Senior Fellow in the Microelectronics
Group at CERN, Geneva,
Switzerland. From 2014 to 2015, he
was a postdoctoral researcher with
the Department of Electrical Engineering,
KU Leuven. From 2015 until
2020, he was an assistant professor,
and since 2020, he has been an associate
professor at KU Leuven, Leuven,
Belgium, within the same department.
His main research interests are
analog and mixed-signal integrated
circuits for high-performance data
converters, dc-dc converters, optical
receivers, and cryogenic circuits.
IEEE SOLID-STATE CIRCUITS MAGAZINE WINTER 2022
53
https://web.stanford.edu/~murmann/adcsurvey.html https://web.stanford.edu/~murmann/adcsurvey.html

IEEE Solid-States Circuits Magazine - Winter 2022

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Winter 2022

Contents
IEEE Solid-States Circuits Magazine - Winter 2022 - Cover1
IEEE Solid-States Circuits Magazine - Winter 2022 - Cover2
IEEE Solid-States Circuits Magazine - Winter 2022 - Contents
IEEE Solid-States Circuits Magazine - Winter 2022 - 2
IEEE Solid-States Circuits Magazine - Winter 2022 - 3
IEEE Solid-States Circuits Magazine - Winter 2022 - 4
IEEE Solid-States Circuits Magazine - Winter 2022 - 5
IEEE Solid-States Circuits Magazine - Winter 2022 - 6
IEEE Solid-States Circuits Magazine - Winter 2022 - 7
IEEE Solid-States Circuits Magazine - Winter 2022 - 8
IEEE Solid-States Circuits Magazine - Winter 2022 - 9
IEEE Solid-States Circuits Magazine - Winter 2022 - 10
IEEE Solid-States Circuits Magazine - Winter 2022 - 11
IEEE Solid-States Circuits Magazine - Winter 2022 - 12
IEEE Solid-States Circuits Magazine - Winter 2022 - 13
IEEE Solid-States Circuits Magazine - Winter 2022 - 14
IEEE Solid-States Circuits Magazine - Winter 2022 - 15
IEEE Solid-States Circuits Magazine - Winter 2022 - 16
IEEE Solid-States Circuits Magazine - Winter 2022 - 17
IEEE Solid-States Circuits Magazine - Winter 2022 - 18
IEEE Solid-States Circuits Magazine - Winter 2022 - 19
IEEE Solid-States Circuits Magazine - Winter 2022 - 20
IEEE Solid-States Circuits Magazine - Winter 2022 - 21
IEEE Solid-States Circuits Magazine - Winter 2022 - 22
IEEE Solid-States Circuits Magazine - Winter 2022 - 23
IEEE Solid-States Circuits Magazine - Winter 2022 - 24
IEEE Solid-States Circuits Magazine - Winter 2022 - 25
IEEE Solid-States Circuits Magazine - Winter 2022 - 26
IEEE Solid-States Circuits Magazine - Winter 2022 - 27
IEEE Solid-States Circuits Magazine - Winter 2022 - 28
IEEE Solid-States Circuits Magazine - Winter 2022 - 29
IEEE Solid-States Circuits Magazine - Winter 2022 - 30
IEEE Solid-States Circuits Magazine - Winter 2022 - 31
IEEE Solid-States Circuits Magazine - Winter 2022 - 32
IEEE Solid-States Circuits Magazine - Winter 2022 - 33
IEEE Solid-States Circuits Magazine - Winter 2022 - 34
IEEE Solid-States Circuits Magazine - Winter 2022 - 35
IEEE Solid-States Circuits Magazine - Winter 2022 - 36
IEEE Solid-States Circuits Magazine - Winter 2022 - 37
IEEE Solid-States Circuits Magazine - Winter 2022 - 38
IEEE Solid-States Circuits Magazine - Winter 2022 - 39
IEEE Solid-States Circuits Magazine - Winter 2022 - 40
IEEE Solid-States Circuits Magazine - Winter 2022 - 41
IEEE Solid-States Circuits Magazine - Winter 2022 - 42
IEEE Solid-States Circuits Magazine - Winter 2022 - 43
IEEE Solid-States Circuits Magazine - Winter 2022 - 44
IEEE Solid-States Circuits Magazine - Winter 2022 - 45
IEEE Solid-States Circuits Magazine - Winter 2022 - 46
IEEE Solid-States Circuits Magazine - Winter 2022 - 47
IEEE Solid-States Circuits Magazine - Winter 2022 - 48
IEEE Solid-States Circuits Magazine - Winter 2022 - 49
IEEE Solid-States Circuits Magazine - Winter 2022 - 50
IEEE Solid-States Circuits Magazine - Winter 2022 - 51
IEEE Solid-States Circuits Magazine - Winter 2022 - 52
IEEE Solid-States Circuits Magazine - Winter 2022 - 53
IEEE Solid-States Circuits Magazine - Winter 2022 - 54
IEEE Solid-States Circuits Magazine - Winter 2022 - 55
IEEE Solid-States Circuits Magazine - Winter 2022 - 56
IEEE Solid-States Circuits Magazine - Winter 2022 - 57
IEEE Solid-States Circuits Magazine - Winter 2022 - 58
IEEE Solid-States Circuits Magazine - Winter 2022 - 59
IEEE Solid-States Circuits Magazine - Winter 2022 - 60
IEEE Solid-States Circuits Magazine - Winter 2022 - 61
IEEE Solid-States Circuits Magazine - Winter 2022 - 62
IEEE Solid-States Circuits Magazine - Winter 2022 - 63
IEEE Solid-States Circuits Magazine - Winter 2022 - 64
IEEE Solid-States Circuits Magazine - Winter 2022 - 65
IEEE Solid-States Circuits Magazine - Winter 2022 - 66
IEEE Solid-States Circuits Magazine - Winter 2022 - 67
IEEE Solid-States Circuits Magazine - Winter 2022 - 68
IEEE Solid-States Circuits Magazine - Winter 2022 - 69
IEEE Solid-States Circuits Magazine - Winter 2022 - 70
IEEE Solid-States Circuits Magazine - Winter 2022 - 71
IEEE Solid-States Circuits Magazine - Winter 2022 - 72
IEEE Solid-States Circuits Magazine - Winter 2022 - 73
IEEE Solid-States Circuits Magazine - Winter 2022 - 74
IEEE Solid-States Circuits Magazine - Winter 2022 - 75
IEEE Solid-States Circuits Magazine - Winter 2022 - 76
IEEE Solid-States Circuits Magazine - Winter 2022 - 77
IEEE Solid-States Circuits Magazine - Winter 2022 - 78
IEEE Solid-States Circuits Magazine - Winter 2022 - 79
IEEE Solid-States Circuits Magazine - Winter 2022 - 80
IEEE Solid-States Circuits Magazine - Winter 2022 - 81
IEEE Solid-States Circuits Magazine - Winter 2022 - 82
IEEE Solid-States Circuits Magazine - Winter 2022 - 83
IEEE Solid-States Circuits Magazine - Winter 2022 - 84
IEEE Solid-States Circuits Magazine - Winter 2022 - 85
IEEE Solid-States Circuits Magazine - Winter 2022 - 86
IEEE Solid-States Circuits Magazine - Winter 2022 - 87
IEEE Solid-States Circuits Magazine - Winter 2022 - 88
IEEE Solid-States Circuits Magazine - Winter 2022 - 89
IEEE Solid-States Circuits Magazine - Winter 2022 - 90
IEEE Solid-States Circuits Magazine - Winter 2022 - 91
IEEE Solid-States Circuits Magazine - Winter 2022 - 92
IEEE Solid-States Circuits Magazine - Winter 2022 - 93
IEEE Solid-States Circuits Magazine - Winter 2022 - 94
IEEE Solid-States Circuits Magazine - Winter 2022 - 95
IEEE Solid-States Circuits Magazine - Winter 2022 - 96
IEEE Solid-States Circuits Magazine - Winter 2022 - 97
IEEE Solid-States Circuits Magazine - Winter 2022 - 98
IEEE Solid-States Circuits Magazine - Winter 2022 - 99
IEEE Solid-States Circuits Magazine - Winter 2022 - 100
IEEE Solid-States Circuits Magazine - Winter 2022 - 101
IEEE Solid-States Circuits Magazine - Winter 2022 - 102
IEEE Solid-States Circuits Magazine - Winter 2022 - 103
IEEE Solid-States Circuits Magazine - Winter 2022 - 104
IEEE Solid-States Circuits Magazine - Winter 2022 - 105
IEEE Solid-States Circuits Magazine - Winter 2022 - 106
IEEE Solid-States Circuits Magazine - Winter 2022 - 107
IEEE Solid-States Circuits Magazine - Winter 2022 - 108
IEEE Solid-States Circuits Magazine - Winter 2022 - 109
IEEE Solid-States Circuits Magazine - Winter 2022 - 110
IEEE Solid-States Circuits Magazine - Winter 2022 - 111
IEEE Solid-States Circuits Magazine - Winter 2022 - 112
IEEE Solid-States Circuits Magazine - Winter 2022 - Cover3
IEEE Solid-States Circuits Magazine - Winter 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com