IEEE Power Electronics Magazine - June 2023 - 43
voltage-tunable magnetoelectric composite inductors
have been realized, which allows voltage adjustment of
the effective permeability of the inductors. In this case,
a possible increase in core losses must be avoided [11].
For this purpose, magnetoelectric components have
been integrated into the inductor or part of the inductor
as variable permeability magnetic flux valves. This
approach has been the subject of much research, including
magnetic thin film and MEMS devices. Figure 4
shows the results obtained with voltage-controlled magnetoelectric
inductors, reaching a 450% tunability in the
kHz-band. For power electronics applications, electric
field modulation of permeabilities has been achieved for
ferromagnetic bulk and wound cores, ferrite cores, and
magnetic piezoelectric material composites [11], [12],
resulting in significant inductance changes. The magnetic
material of choice is defined by magnetoelastic properties
(magnetic anisotropy and relative permeability) and
resistivity versus thickness. All these parameters must
be specifically tuned in terms of inductance and operating
frequency for the intended variable inductor applications.
By transferring the concepts to high-power, bulk
material-based applications, the aforementioned limitations
for the mechanical approaches in response time and
energy consumption could be overcome.
Other methods of tunable inductors rely on the use of
ferrofluids in the air gap of the inductors or as a variable
separation material in a pancake coil arrangement, or the
use of deformable magnetic composites. Although permeability
is an intrinsic property of a material, shielding
by eddy currents may lead to some additional frequencydependence
[14], which could be exploited for inductance
dynamic tuning. These methods are still at the proof-ofconcept
stage at best and are also subject to similar reliability
issues as discussed above.
FIG 3 Mechanically adjustable inductor in which the length of the air gap
lg can be tuned by moving the cores using an actuator (in blue).
Applications-Brief Overview and Simple
Calculation of Gains
Tunable inductances have long been used as controlled
impedances, e.g., to adjust lighting intensity or for arc welding.
Nonetheless, the wide spreading of power electronics
will greatly benefit from online adjustable magnetics, which
will further push optimal Pareto fronts. This will bring
FIG 4 (a) Measured inductance and (b) Q-factor of the integrated tunable inductor at voltage tuning with applied electric field from
0 to 12 kV/cm. (c) Schematic of the magnetoelectric inductor with a multiferroic composite core (reproduced from [13]).
June 2023 z IEEE POWER ELECTRONICS MAGAZINE 43
IEEE Power Electronics Magazine - June 2023
Table of Contents for the Digital Edition of IEEE Power Electronics Magazine - June 2023
Contents
IEEE Power Electronics Magazine - June 2023 - Cover1
IEEE Power Electronics Magazine - June 2023 - Cover2
IEEE Power Electronics Magazine - June 2023 - Contents
IEEE Power Electronics Magazine - June 2023 - 2
IEEE Power Electronics Magazine - June 2023 - 3
IEEE Power Electronics Magazine - June 2023 - 4
IEEE Power Electronics Magazine - June 2023 - 5
IEEE Power Electronics Magazine - June 2023 - 6
IEEE Power Electronics Magazine - June 2023 - 7
IEEE Power Electronics Magazine - June 2023 - 8
IEEE Power Electronics Magazine - June 2023 - 9
IEEE Power Electronics Magazine - June 2023 - 10
IEEE Power Electronics Magazine - June 2023 - 11
IEEE Power Electronics Magazine - June 2023 - 12
IEEE Power Electronics Magazine - June 2023 - 13
IEEE Power Electronics Magazine - June 2023 - 14
IEEE Power Electronics Magazine - June 2023 - 15
IEEE Power Electronics Magazine - June 2023 - 16
IEEE Power Electronics Magazine - June 2023 - 17
IEEE Power Electronics Magazine - June 2023 - 18
IEEE Power Electronics Magazine - June 2023 - 19
IEEE Power Electronics Magazine - June 2023 - 20
IEEE Power Electronics Magazine - June 2023 - 21
IEEE Power Electronics Magazine - June 2023 - 22
IEEE Power Electronics Magazine - June 2023 - 23
IEEE Power Electronics Magazine - June 2023 - 24
IEEE Power Electronics Magazine - June 2023 - 25
IEEE Power Electronics Magazine - June 2023 - 26
IEEE Power Electronics Magazine - June 2023 - 27
IEEE Power Electronics Magazine - June 2023 - 28
IEEE Power Electronics Magazine - June 2023 - 29
IEEE Power Electronics Magazine - June 2023 - 30
IEEE Power Electronics Magazine - June 2023 - 31
IEEE Power Electronics Magazine - June 2023 - 32
IEEE Power Electronics Magazine - June 2023 - 33
IEEE Power Electronics Magazine - June 2023 - 34
IEEE Power Electronics Magazine - June 2023 - 35
IEEE Power Electronics Magazine - June 2023 - 36
IEEE Power Electronics Magazine - June 2023 - 37
IEEE Power Electronics Magazine - June 2023 - 38
IEEE Power Electronics Magazine - June 2023 - 39
IEEE Power Electronics Magazine - June 2023 - 40
IEEE Power Electronics Magazine - June 2023 - 41
IEEE Power Electronics Magazine - June 2023 - 42
IEEE Power Electronics Magazine - June 2023 - 43
IEEE Power Electronics Magazine - June 2023 - 44
IEEE Power Electronics Magazine - June 2023 - 45
IEEE Power Electronics Magazine - June 2023 - 46
IEEE Power Electronics Magazine - June 2023 - 47
IEEE Power Electronics Magazine - June 2023 - 48
IEEE Power Electronics Magazine - June 2023 - 49
IEEE Power Electronics Magazine - June 2023 - 50
IEEE Power Electronics Magazine - June 2023 - 51
IEEE Power Electronics Magazine - June 2023 - 52
IEEE Power Electronics Magazine - June 2023 - 53
IEEE Power Electronics Magazine - June 2023 - 54
IEEE Power Electronics Magazine - June 2023 - 55
IEEE Power Electronics Magazine - June 2023 - 56
IEEE Power Electronics Magazine - June 2023 - 57
IEEE Power Electronics Magazine - June 2023 - 58
IEEE Power Electronics Magazine - June 2023 - 59
IEEE Power Electronics Magazine - June 2023 - 60
IEEE Power Electronics Magazine - June 2023 - 61
IEEE Power Electronics Magazine - June 2023 - 62
IEEE Power Electronics Magazine - June 2023 - 63
IEEE Power Electronics Magazine - June 2023 - 64
IEEE Power Electronics Magazine - June 2023 - 65
IEEE Power Electronics Magazine - June 2023 - 66
IEEE Power Electronics Magazine - June 2023 - 67
IEEE Power Electronics Magazine - June 2023 - 68
IEEE Power Electronics Magazine - June 2023 - 69
IEEE Power Electronics Magazine - June 2023 - 70
IEEE Power Electronics Magazine - June 2023 - 71
IEEE Power Electronics Magazine - June 2023 - 72
IEEE Power Electronics Magazine - June 2023 - 73
IEEE Power Electronics Magazine - June 2023 - 74
IEEE Power Electronics Magazine - June 2023 - 75
IEEE Power Electronics Magazine - June 2023 - 76
IEEE Power Electronics Magazine - June 2023 - 77
IEEE Power Electronics Magazine - June 2023 - 78
IEEE Power Electronics Magazine - June 2023 - 79
IEEE Power Electronics Magazine - June 2023 - 80
IEEE Power Electronics Magazine - June 2023 - 81
IEEE Power Electronics Magazine - June 2023 - 82
IEEE Power Electronics Magazine - June 2023 - 83
IEEE Power Electronics Magazine - June 2023 - 84
IEEE Power Electronics Magazine - June 2023 - 85
IEEE Power Electronics Magazine - June 2023 - 86
IEEE Power Electronics Magazine - June 2023 - 87
IEEE Power Electronics Magazine - June 2023 - 88
IEEE Power Electronics Magazine - June 2023 - 89
IEEE Power Electronics Magazine - June 2023 - 90
IEEE Power Electronics Magazine - June 2023 - 91
IEEE Power Electronics Magazine - June 2023 - 92
IEEE Power Electronics Magazine - June 2023 - 93
IEEE Power Electronics Magazine - June 2023 - 94
IEEE Power Electronics Magazine - June 2023 - 95
IEEE Power Electronics Magazine - June 2023 - 96
IEEE Power Electronics Magazine - June 2023 - 97
IEEE Power Electronics Magazine - June 2023 - 98
IEEE Power Electronics Magazine - June 2023 - 99
IEEE Power Electronics Magazine - June 2023 - 100
IEEE Power Electronics Magazine - June 2023 - 101
IEEE Power Electronics Magazine - June 2023 - 102
IEEE Power Electronics Magazine - June 2023 - 103
IEEE Power Electronics Magazine - June 2023 - 104
IEEE Power Electronics Magazine - June 2023 - 105
IEEE Power Electronics Magazine - June 2023 - 106
IEEE Power Electronics Magazine - June 2023 - 107
IEEE Power Electronics Magazine - June 2023 - 108
IEEE Power Electronics Magazine - June 2023 - 109
IEEE Power Electronics Magazine - June 2023 - 110
IEEE Power Electronics Magazine - June 2023 - 111
IEEE Power Electronics Magazine - June 2023 - 112
IEEE Power Electronics Magazine - June 2023 - 113
IEEE Power Electronics Magazine - June 2023 - 114
IEEE Power Electronics Magazine - June 2023 - 115
IEEE Power Electronics Magazine - June 2023 - 116
IEEE Power Electronics Magazine - June 2023 - 117
IEEE Power Electronics Magazine - June 2023 - 118
IEEE Power Electronics Magazine - June 2023 - 119
IEEE Power Electronics Magazine - June 2023 - 120
IEEE Power Electronics Magazine - June 2023 - 121
IEEE Power Electronics Magazine - June 2023 - 122
IEEE Power Electronics Magazine - June 2023 - 123
IEEE Power Electronics Magazine - June 2023 - 124
IEEE Power Electronics Magazine - June 2023 - Cover3
IEEE Power Electronics Magazine - June 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2018
https://www.nxtbook.com/nxtbooks/ieee/pelcompendium_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2014
https://www.nxtbookmedia.com