IEEE Power Electronics Magazine - June 2023 - 63
importance to industrial applications. In this perspective,
energy autonomy is a key requirement for IoT technology
to achieve the reliability and sustainability objectives of
the global environmental roadmap. This includes private
and public industrial, network, and civil infrastructure
(including communication) as well as data acquisition,
analysis, and exploitation infrastructure.
Innovation and Outlook for Industrial Deployment
Beyond device- and system-level research and development,
innovation towards easy-to-install devices and fast
transfer into industrial products is required and will need
additional support, because start-ups or small and
medium enterprises are often the technology drivers. This
is also true for obsolescence management in dynamic
technology areas. Making commercial off-the-shelf
(COTS) devices available for a broad range of power/
energy requirements is a first step on which many companies
are working. However, as customized components
and fabrication are often required in the production of
energy harvesting devices, supply chains must be supported
by public bodies and industry to help small companies
enter the market in a sustainable way.
Standardization is another step towards market
acceptance. EH is currently constrained between wireless
communications standards and measurement rules
for dedicated monitoring tasks. A more determined step
towards standardization is strongly recommended to support,
shape, coordinate, and guide research efforts at the
component and device level, prioritizing restrictions, and
accounting for future challenges.
There are many opportunities for EH beyond the inherent
self-powering aspect. The vision of IoT deployment,
high-speed wireless networking, and potential applications
is currently obscured by powering limitations, and
addressing them may open unforeseen opportunities in
fields like pervasive/autonomous sensing, computing,
intelligence, and virtual sensing. As EH is reaching a
technology mutation point, its combination with wireless
power transfer, fast and low-power communication
and computation, and smart multi-functional interfacing
and integration will provide true wireless, maintenance-free,
and green IoT nodes for several applications.
As an example, an integrated and industrialized aircraft
strain sensor powered by dynamic thermal energy harvesting,
certified for flight tests is shown in Figure 10.
Standardization could bridge the yet-unshaped new
capabilities offered by energy harvesting to the requirements
of industrial users, avoid compatibility and divergence
issues, and provide a harmonized research and
investment framework for forecastable, sustainable
growth. Turning the power autonomy technology from
a collection of niche opportunities and singular inventions
to a reliable research and development platform
would offer benefits analogous to those of Moore's-law
in microelectronics.
FIG 10 The heat-powered STRAINWISE aircraft sensor node,
from [27].
Acknowledgment
The authors would like to thank the Power Supply Manufacturers
Association (PSMA) and the Energy Harvesting
Committee of PSMA for supporting this work.
About the Authors
Thomas Becker received the M.Sc. degree in microelectronics
and the Ph.D. degree in microsystems for the work
on micro reactor technologies at the University of Bremen,
Bremen, Germany. Between 1994 and 2000, he was working
at DAIMLER-BENZ (Mercedes) Research, Munich, Germany,
as a Research Fellow on various aspects of sensor technologies
for automotive applications. From 2000 to 2017, he was
working for AIRBUS (EADS) Research, Munich and Hamburg,
Germany, as the Manager of the chemical sensors laboratory,
as the Key Technology Area Manager for microsystems,
electronics, and microelectronics, and as an Expert
for wireless communications, autonomous sensor systems,
and energy harvesting (EH) for aerospace applications.
From 2003 to 2019, he was a Professor for micro and nano
technologies at the Physics Department, NTA University of
Applied Sciences, Isny, Germany. He is the Founder of THOBECORE
Consulting and Research, Bremen, Germany, supporting
public organizations, companies, and institutes in
research and innovation or as a Member of advisory boards.
He is the author and co-author of about 150 publications in
textbooks, scientific journals, and conferences (h-index 26)
and he holds about 100 patents or pending patents. Moreover,
he is acting as a Guest Editor and a Reviewer for various
scientific journals. He also served as the Chairman for
several international conferences.
Michail E. Kiziroglou received the diploma degree in
electrical and computer engineering from the Aristotle University
of Thessaloniki, Thessaloniki, Greece, and the master's
degree in microelectronics and nanoelectronics from
the Democritus University of Thrace, Thrace, Greece, in
2000 and 2003, respectively. He received the Ph.D. degree in
microelectronics and spintronics awarded by the University
of Southampton, Southampton, U.K.,
in 2007. He is a
Research Fellow with the Optical and Semiconductor
Devices Group of Imperial College London and an Associate
June 2023 z IEEE POWER ELECTRONICS MAGAZINE 63
IEEE Power Electronics Magazine - June 2023
Table of Contents for the Digital Edition of IEEE Power Electronics Magazine - June 2023
Contents
IEEE Power Electronics Magazine - June 2023 - Cover1
IEEE Power Electronics Magazine - June 2023 - Cover2
IEEE Power Electronics Magazine - June 2023 - Contents
IEEE Power Electronics Magazine - June 2023 - 2
IEEE Power Electronics Magazine - June 2023 - 3
IEEE Power Electronics Magazine - June 2023 - 4
IEEE Power Electronics Magazine - June 2023 - 5
IEEE Power Electronics Magazine - June 2023 - 6
IEEE Power Electronics Magazine - June 2023 - 7
IEEE Power Electronics Magazine - June 2023 - 8
IEEE Power Electronics Magazine - June 2023 - 9
IEEE Power Electronics Magazine - June 2023 - 10
IEEE Power Electronics Magazine - June 2023 - 11
IEEE Power Electronics Magazine - June 2023 - 12
IEEE Power Electronics Magazine - June 2023 - 13
IEEE Power Electronics Magazine - June 2023 - 14
IEEE Power Electronics Magazine - June 2023 - 15
IEEE Power Electronics Magazine - June 2023 - 16
IEEE Power Electronics Magazine - June 2023 - 17
IEEE Power Electronics Magazine - June 2023 - 18
IEEE Power Electronics Magazine - June 2023 - 19
IEEE Power Electronics Magazine - June 2023 - 20
IEEE Power Electronics Magazine - June 2023 - 21
IEEE Power Electronics Magazine - June 2023 - 22
IEEE Power Electronics Magazine - June 2023 - 23
IEEE Power Electronics Magazine - June 2023 - 24
IEEE Power Electronics Magazine - June 2023 - 25
IEEE Power Electronics Magazine - June 2023 - 26
IEEE Power Electronics Magazine - June 2023 - 27
IEEE Power Electronics Magazine - June 2023 - 28
IEEE Power Electronics Magazine - June 2023 - 29
IEEE Power Electronics Magazine - June 2023 - 30
IEEE Power Electronics Magazine - June 2023 - 31
IEEE Power Electronics Magazine - June 2023 - 32
IEEE Power Electronics Magazine - June 2023 - 33
IEEE Power Electronics Magazine - June 2023 - 34
IEEE Power Electronics Magazine - June 2023 - 35
IEEE Power Electronics Magazine - June 2023 - 36
IEEE Power Electronics Magazine - June 2023 - 37
IEEE Power Electronics Magazine - June 2023 - 38
IEEE Power Electronics Magazine - June 2023 - 39
IEEE Power Electronics Magazine - June 2023 - 40
IEEE Power Electronics Magazine - June 2023 - 41
IEEE Power Electronics Magazine - June 2023 - 42
IEEE Power Electronics Magazine - June 2023 - 43
IEEE Power Electronics Magazine - June 2023 - 44
IEEE Power Electronics Magazine - June 2023 - 45
IEEE Power Electronics Magazine - June 2023 - 46
IEEE Power Electronics Magazine - June 2023 - 47
IEEE Power Electronics Magazine - June 2023 - 48
IEEE Power Electronics Magazine - June 2023 - 49
IEEE Power Electronics Magazine - June 2023 - 50
IEEE Power Electronics Magazine - June 2023 - 51
IEEE Power Electronics Magazine - June 2023 - 52
IEEE Power Electronics Magazine - June 2023 - 53
IEEE Power Electronics Magazine - June 2023 - 54
IEEE Power Electronics Magazine - June 2023 - 55
IEEE Power Electronics Magazine - June 2023 - 56
IEEE Power Electronics Magazine - June 2023 - 57
IEEE Power Electronics Magazine - June 2023 - 58
IEEE Power Electronics Magazine - June 2023 - 59
IEEE Power Electronics Magazine - June 2023 - 60
IEEE Power Electronics Magazine - June 2023 - 61
IEEE Power Electronics Magazine - June 2023 - 62
IEEE Power Electronics Magazine - June 2023 - 63
IEEE Power Electronics Magazine - June 2023 - 64
IEEE Power Electronics Magazine - June 2023 - 65
IEEE Power Electronics Magazine - June 2023 - 66
IEEE Power Electronics Magazine - June 2023 - 67
IEEE Power Electronics Magazine - June 2023 - 68
IEEE Power Electronics Magazine - June 2023 - 69
IEEE Power Electronics Magazine - June 2023 - 70
IEEE Power Electronics Magazine - June 2023 - 71
IEEE Power Electronics Magazine - June 2023 - 72
IEEE Power Electronics Magazine - June 2023 - 73
IEEE Power Electronics Magazine - June 2023 - 74
IEEE Power Electronics Magazine - June 2023 - 75
IEEE Power Electronics Magazine - June 2023 - 76
IEEE Power Electronics Magazine - June 2023 - 77
IEEE Power Electronics Magazine - June 2023 - 78
IEEE Power Electronics Magazine - June 2023 - 79
IEEE Power Electronics Magazine - June 2023 - 80
IEEE Power Electronics Magazine - June 2023 - 81
IEEE Power Electronics Magazine - June 2023 - 82
IEEE Power Electronics Magazine - June 2023 - 83
IEEE Power Electronics Magazine - June 2023 - 84
IEEE Power Electronics Magazine - June 2023 - 85
IEEE Power Electronics Magazine - June 2023 - 86
IEEE Power Electronics Magazine - June 2023 - 87
IEEE Power Electronics Magazine - June 2023 - 88
IEEE Power Electronics Magazine - June 2023 - 89
IEEE Power Electronics Magazine - June 2023 - 90
IEEE Power Electronics Magazine - June 2023 - 91
IEEE Power Electronics Magazine - June 2023 - 92
IEEE Power Electronics Magazine - June 2023 - 93
IEEE Power Electronics Magazine - June 2023 - 94
IEEE Power Electronics Magazine - June 2023 - 95
IEEE Power Electronics Magazine - June 2023 - 96
IEEE Power Electronics Magazine - June 2023 - 97
IEEE Power Electronics Magazine - June 2023 - 98
IEEE Power Electronics Magazine - June 2023 - 99
IEEE Power Electronics Magazine - June 2023 - 100
IEEE Power Electronics Magazine - June 2023 - 101
IEEE Power Electronics Magazine - June 2023 - 102
IEEE Power Electronics Magazine - June 2023 - 103
IEEE Power Electronics Magazine - June 2023 - 104
IEEE Power Electronics Magazine - June 2023 - 105
IEEE Power Electronics Magazine - June 2023 - 106
IEEE Power Electronics Magazine - June 2023 - 107
IEEE Power Electronics Magazine - June 2023 - 108
IEEE Power Electronics Magazine - June 2023 - 109
IEEE Power Electronics Magazine - June 2023 - 110
IEEE Power Electronics Magazine - June 2023 - 111
IEEE Power Electronics Magazine - June 2023 - 112
IEEE Power Electronics Magazine - June 2023 - 113
IEEE Power Electronics Magazine - June 2023 - 114
IEEE Power Electronics Magazine - June 2023 - 115
IEEE Power Electronics Magazine - June 2023 - 116
IEEE Power Electronics Magazine - June 2023 - 117
IEEE Power Electronics Magazine - June 2023 - 118
IEEE Power Electronics Magazine - June 2023 - 119
IEEE Power Electronics Magazine - June 2023 - 120
IEEE Power Electronics Magazine - June 2023 - 121
IEEE Power Electronics Magazine - June 2023 - 122
IEEE Power Electronics Magazine - June 2023 - 123
IEEE Power Electronics Magazine - June 2023 - 124
IEEE Power Electronics Magazine - June 2023 - Cover3
IEEE Power Electronics Magazine - June 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2018
https://www.nxtbook.com/nxtbooks/ieee/pelcompendium_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2014
https://www.nxtbookmedia.com