IEEE Power Electronics Magazine - March 2016 - 23

Controlled
Synchronous Rectifier

Variable Frequency
Resonant Inverter

SH
CP

+
-

CS

T

C

Load

VS

SD
+
Vo
-

SS

SL

fig 9 The diagram of inductive-coupled power stage with a series-resonant inverter and
a controlled synchronous rectifier (redrawn from [24]).

technique and the control design of
this wireless charger for a wide input
voltage range.
From the previously cited examples, it is clear that magnetic resonance based on high Q factors and
well-tuned resonators has been a common practice among biomedical and

power electronics communities for
many decades.

Midrange applications Based on
conduction, radiation, or Magnetic
resonance
Since Tesla described the use of WPT for
powering a lighting device (Figure  3),

most of the two coil WPT systems have
been designed for short-range applications. In 1937, an interesting midrange
three-coil WPT system for powering a
lamp was described [12]. Recently, several multiple coil WPT systems have been
reported. Before examples of midrange
WPT are described in this section, it is
necessary to introduce the concepts of
near-field coupling and midrange WPT.
■■Near-field distance is related to the
wavelength of the electromagnetic
wave and is usually defined as a distance within one wavelength m in a
general sense. In a stricter sense, a
distance of m/2r or 0.159m is considered as the range for near-field
coupling.
■■The concept of short- and midrange
WPT is related to the ratio of the
transmission distance d and the coil
dimension of the transmitter coil. In
general, short-range coupling refers
to a transmission distance less than
or equal to the dimension of the
transmitter structure. For a circular

unbeatable
priceperformance
ratio

Do you use the best tools?
The Bode 100 vector network analyzer is the optimal choice
for small signal measurements in electronic systems. With
its great usability, high accuracy and low price the Bode 100 is
the perfect toolset for measurements from 1 Hz to 40 MHz.
*
*
*
*

http://www.omicronlab.com

Table of Contents for the Digital Edition of IEEE Power Electronics Magazine - March 2016

IEEE Power Electronics Magazine - March 2016 - Cover1
IEEE Power Electronics Magazine - March 2016 - Cover2
IEEE Power Electronics Magazine - March 2016 - 1
IEEE Power Electronics Magazine - March 2016 - 2
IEEE Power Electronics Magazine - March 2016 - 3
IEEE Power Electronics Magazine - March 2016 - 4
IEEE Power Electronics Magazine - March 2016 - 5
IEEE Power Electronics Magazine - March 2016 - 6
IEEE Power Electronics Magazine - March 2016 - 7
IEEE Power Electronics Magazine - March 2016 - 8
IEEE Power Electronics Magazine - March 2016 - 9
IEEE Power Electronics Magazine - March 2016 - 10
IEEE Power Electronics Magazine - March 2016 - 11
IEEE Power Electronics Magazine - March 2016 - 12
IEEE Power Electronics Magazine - March 2016 - 13
IEEE Power Electronics Magazine - March 2016 - 14
IEEE Power Electronics Magazine - March 2016 - 15
IEEE Power Electronics Magazine - March 2016 - 16
IEEE Power Electronics Magazine - March 2016 - 17
IEEE Power Electronics Magazine - March 2016 - 18
IEEE Power Electronics Magazine - March 2016 - 19
IEEE Power Electronics Magazine - March 2016 - 20
IEEE Power Electronics Magazine - March 2016 - 21
IEEE Power Electronics Magazine - March 2016 - 22
IEEE Power Electronics Magazine - March 2016 - 23
IEEE Power Electronics Magazine - March 2016 - 24
IEEE Power Electronics Magazine - March 2016 - 25
IEEE Power Electronics Magazine - March 2016 - 26
IEEE Power Electronics Magazine - March 2016 - 27
IEEE Power Electronics Magazine - March 2016 - 28
IEEE Power Electronics Magazine - March 2016 - 29
IEEE Power Electronics Magazine - March 2016 - 30
IEEE Power Electronics Magazine - March 2016 - 31
IEEE Power Electronics Magazine - March 2016 - 32
IEEE Power Electronics Magazine - March 2016 - 33
IEEE Power Electronics Magazine - March 2016 - 34
IEEE Power Electronics Magazine - March 2016 - 35
IEEE Power Electronics Magazine - March 2016 - 36
IEEE Power Electronics Magazine - March 2016 - 37
IEEE Power Electronics Magazine - March 2016 - 38
IEEE Power Electronics Magazine - March 2016 - 39
IEEE Power Electronics Magazine - March 2016 - 40
IEEE Power Electronics Magazine - March 2016 - 41
IEEE Power Electronics Magazine - March 2016 - 42
IEEE Power Electronics Magazine - March 2016 - 43
IEEE Power Electronics Magazine - March 2016 - 44
IEEE Power Electronics Magazine - March 2016 - 45
IEEE Power Electronics Magazine - March 2016 - 46
IEEE Power Electronics Magazine - March 2016 - 47
IEEE Power Electronics Magazine - March 2016 - 48
IEEE Power Electronics Magazine - March 2016 - 49
IEEE Power Electronics Magazine - March 2016 - 50
IEEE Power Electronics Magazine - March 2016 - Cover3
IEEE Power Electronics Magazine - March 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2018
https://www.nxtbook.com/nxtbooks/ieee/pelcompendium_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2014
https://www.nxtbookmedia.com