IEEE Power Electronics Magazine - March 2017 - 19

A

B

Efficiency
regulations

C
D

Driving power conversion
efficiency designs

E

by Rich Fassler

G

Efficiency Program Requirements
Are Not All Created Equal
Before diving into the efficiency programs (regardless of
their geographic location), it is helpful to understand differences among program types. Some are voluntary
Digital Object Identifier 10.1109/MPEL.2016.2642518
Date of publication: 7 March 2017

2329-9207/17©2017IEEE

F
©ISTOCKPHOTO.COM/ALTAYB

I

n recent decades, government agencies
developed programs to improve the efficiency of our electronic products and
appliances. A 1999 study estimated that
up to 10% of electricity consumed by
residential products was wasted when
products had been turned off by consumers
[1]. Early efficiency programs focused on minimizing the amount of power consumed by these
so-called energy vampires while in off mode.
Newer efficiency metrics look at reducing energy waste
in all operating modes.
Regardless of the program approach, they all share the
premise that to maximize the overall product efficiency
of any electronic product, the product's power supply
that converts the high-voltage ac mains to the low-voltage
operating dc must be highly efficient. This has motivated
power supply designers to find new and innovative ways
to increase power conversion efficiency. This article discusses different types of efficiency regulations, from
early modal approaches to today's more complicated daily
energy consumption calculations, and their impact on ac-
dc power conversion design.

requirements, offering manufacturers a choice of whether
to meet the required levels. Voluntary programs include the
U.S. Environmental Protection Agency ENERGY STAR and
European Commission (EC) Code of Conduct (CoC). There
are also mandatory programs, referred to as standards or
implementing measures. Examples include the California
Energy Commission (CEC) Title 20 Appliance Efficiency
Regulations, the U.S. Department of Energy (DOE) Energy
Independence and Security Act (EISA), and the EC Ecodesign Directive for Energy-Related Products. Although both
types affect market transformation, a mandatory program
does so by a specific date, demanding conformance and
usually spurring new product design.
Regardless of voluntary or mandatory status, efficiency metrics can be 1) modal based (i.e., regulating
off-mode, standby-mode, idle-mode, or active-mode
power consumption) and measured in watts or 2) energy
March 2017

z	IEEE PowEr ElEctronIcs MagazInE

19


http://www.ISTOCKPHOTO.COM/ALTAYB

Table of Contents for the Digital Edition of IEEE Power Electronics Magazine - March 2017

IEEE Power Electronics Magazine - March 2017 - Cover1
IEEE Power Electronics Magazine - March 2017 - Cover2
IEEE Power Electronics Magazine - March 2017 - 1
IEEE Power Electronics Magazine - March 2017 - 2
IEEE Power Electronics Magazine - March 2017 - 3
IEEE Power Electronics Magazine - March 2017 - 4
IEEE Power Electronics Magazine - March 2017 - 5
IEEE Power Electronics Magazine - March 2017 - 6
IEEE Power Electronics Magazine - March 2017 - 7
IEEE Power Electronics Magazine - March 2017 - 8
IEEE Power Electronics Magazine - March 2017 - 9
IEEE Power Electronics Magazine - March 2017 - 10
IEEE Power Electronics Magazine - March 2017 - 11
IEEE Power Electronics Magazine - March 2017 - 12
IEEE Power Electronics Magazine - March 2017 - 13
IEEE Power Electronics Magazine - March 2017 - 14
IEEE Power Electronics Magazine - March 2017 - 15
IEEE Power Electronics Magazine - March 2017 - 16
IEEE Power Electronics Magazine - March 2017 - 17
IEEE Power Electronics Magazine - March 2017 - 18
IEEE Power Electronics Magazine - March 2017 - 19
IEEE Power Electronics Magazine - March 2017 - 20
IEEE Power Electronics Magazine - March 2017 - 21
IEEE Power Electronics Magazine - March 2017 - 22
IEEE Power Electronics Magazine - March 2017 - 23
IEEE Power Electronics Magazine - March 2017 - 24
IEEE Power Electronics Magazine - March 2017 - 25
IEEE Power Electronics Magazine - March 2017 - 26
IEEE Power Electronics Magazine - March 2017 - 27
IEEE Power Electronics Magazine - March 2017 - 28
IEEE Power Electronics Magazine - March 2017 - 29
IEEE Power Electronics Magazine - March 2017 - 30
IEEE Power Electronics Magazine - March 2017 - 31
IEEE Power Electronics Magazine - March 2017 - 32
IEEE Power Electronics Magazine - March 2017 - 33
IEEE Power Electronics Magazine - March 2017 - 34
IEEE Power Electronics Magazine - March 2017 - 35
IEEE Power Electronics Magazine - March 2017 - 36
IEEE Power Electronics Magazine - March 2017 - 37
IEEE Power Electronics Magazine - March 2017 - 38
IEEE Power Electronics Magazine - March 2017 - 39
IEEE Power Electronics Magazine - March 2017 - 40
IEEE Power Electronics Magazine - March 2017 - 41
IEEE Power Electronics Magazine - March 2017 - 42
IEEE Power Electronics Magazine - March 2017 - 43
IEEE Power Electronics Magazine - March 2017 - 44
IEEE Power Electronics Magazine - March 2017 - 45
IEEE Power Electronics Magazine - March 2017 - 46
IEEE Power Electronics Magazine - March 2017 - 47
IEEE Power Electronics Magazine - March 2017 - 48
IEEE Power Electronics Magazine - March 2017 - 49
IEEE Power Electronics Magazine - March 2017 - 50
IEEE Power Electronics Magazine - March 2017 - Cover3
IEEE Power Electronics Magazine - March 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2018
https://www.nxtbook.com/nxtbooks/ieee/pelcompendium_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2014
https://www.nxtbookmedia.com