IEEE Power Electronics Magazine - March 2017 - 26

(a)

(b)
Ancient
Dam

Mound
Field
100 m
(c)

(d)

Mound
Field

Modern
Cultivation
Ancient
Dam

100 m
(e)

(f)

FIG 1 Some examples of lidar applications. (a) Measuring atmospheric properties to
allow real-time compensation of an astronomical telescope [3] (photo courtesy of
Wikipedia); (b) lidar retroreflector left by Apollo 11 for measuring Earth-moon distance
to within 3 cm out of 380,000 km [4] (photo courtesy of Lunar and Planar Institute);
(c)-(f) using lidar to accurately measure elevation and discover archaeological artifacts
[5] (photos courtesy of theconversation.com).

FIG 2 The Velodyne PUCK self-contained 3-D lidar capable of
mapping 300,000 points to 3-cm accuracy each second [7].
(Image courtesy of Velodyne LiDAR.)

26

IEEE PowEr ElEctronIcs MagazInE

z	March 2017

about 8 W, and can fit in the palm of
one's hand. Figure 3 shows a pointcloud map of the team from Efficient
Power Conversion (EPC) standing at
the 2016 IEEE Applied Power Electronics Conference and Exposition
(APEC 2016) EPC booth, taken from
a Phoenix aerial drone equipped with
the PUCK. Velodyne is one of a number of companies developing small,
fast, affordable lidar systems. Others include Quanergy, LeddarTech,
Excelitas, and SICK with new ones to
join soon.
While a number of applications have
been mentioned, two stand out due to
the potential to fundamentally change
how people view and move through
the world. The first is autonomous
vehicles, especially self-driving cars
(Figure 4) [8]. This is a matter of much
hype and debate, but the potential
benefits are great. Not only are there
huge potential safety and efficiency
benefits, the possible time and money
savings for ordinary citizens are just as
significant. As just one example, consider that self-driving cars could solve
the last-mile problem of public transportation. From a North American
point of view, this could eliminate the
de facto requirement of car ownership
for many citizens, eliminating a large
economic burden on many individuals
and families.
The driving process requires a
real-time, high- resolution 3-D map
of the surroundings to drive safely,

FIG 3 The Velodyne PUCK point-cloud image of the EPC team
at APEC 2016.


http://www.theconversation.com

Table of Contents for the Digital Edition of IEEE Power Electronics Magazine - March 2017

IEEE Power Electronics Magazine - March 2017 - Cover1
IEEE Power Electronics Magazine - March 2017 - Cover2
IEEE Power Electronics Magazine - March 2017 - 1
IEEE Power Electronics Magazine - March 2017 - 2
IEEE Power Electronics Magazine - March 2017 - 3
IEEE Power Electronics Magazine - March 2017 - 4
IEEE Power Electronics Magazine - March 2017 - 5
IEEE Power Electronics Magazine - March 2017 - 6
IEEE Power Electronics Magazine - March 2017 - 7
IEEE Power Electronics Magazine - March 2017 - 8
IEEE Power Electronics Magazine - March 2017 - 9
IEEE Power Electronics Magazine - March 2017 - 10
IEEE Power Electronics Magazine - March 2017 - 11
IEEE Power Electronics Magazine - March 2017 - 12
IEEE Power Electronics Magazine - March 2017 - 13
IEEE Power Electronics Magazine - March 2017 - 14
IEEE Power Electronics Magazine - March 2017 - 15
IEEE Power Electronics Magazine - March 2017 - 16
IEEE Power Electronics Magazine - March 2017 - 17
IEEE Power Electronics Magazine - March 2017 - 18
IEEE Power Electronics Magazine - March 2017 - 19
IEEE Power Electronics Magazine - March 2017 - 20
IEEE Power Electronics Magazine - March 2017 - 21
IEEE Power Electronics Magazine - March 2017 - 22
IEEE Power Electronics Magazine - March 2017 - 23
IEEE Power Electronics Magazine - March 2017 - 24
IEEE Power Electronics Magazine - March 2017 - 25
IEEE Power Electronics Magazine - March 2017 - 26
IEEE Power Electronics Magazine - March 2017 - 27
IEEE Power Electronics Magazine - March 2017 - 28
IEEE Power Electronics Magazine - March 2017 - 29
IEEE Power Electronics Magazine - March 2017 - 30
IEEE Power Electronics Magazine - March 2017 - 31
IEEE Power Electronics Magazine - March 2017 - 32
IEEE Power Electronics Magazine - March 2017 - 33
IEEE Power Electronics Magazine - March 2017 - 34
IEEE Power Electronics Magazine - March 2017 - 35
IEEE Power Electronics Magazine - March 2017 - 36
IEEE Power Electronics Magazine - March 2017 - 37
IEEE Power Electronics Magazine - March 2017 - 38
IEEE Power Electronics Magazine - March 2017 - 39
IEEE Power Electronics Magazine - March 2017 - 40
IEEE Power Electronics Magazine - March 2017 - 41
IEEE Power Electronics Magazine - March 2017 - 42
IEEE Power Electronics Magazine - March 2017 - 43
IEEE Power Electronics Magazine - March 2017 - 44
IEEE Power Electronics Magazine - March 2017 - 45
IEEE Power Electronics Magazine - March 2017 - 46
IEEE Power Electronics Magazine - March 2017 - 47
IEEE Power Electronics Magazine - March 2017 - 48
IEEE Power Electronics Magazine - March 2017 - 49
IEEE Power Electronics Magazine - March 2017 - 50
IEEE Power Electronics Magazine - March 2017 - Cover3
IEEE Power Electronics Magazine - March 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2018
https://www.nxtbook.com/nxtbooks/ieee/pelcompendium_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2014
https://www.nxtbookmedia.com