IEEE Power Electronics Magazine - March 2021 - 50
the studies in demand-side energy management, the battery
pack (battery and its inverter) is either modeled as an ideal
battery with a hundred percent efficiency or formulated
with a constant efficiency. However, the inverter efficiency
is a nonlinear function depending on operating conditions
such as (dis)charge power [10], [11]. Considering a constant
battery pack's efficiency is trivial, as a battery with constant efficiency is an ideal battery with a lower capacity and
the same behavior in the system.
Solar Power
Ppv
POD
PG
Pl
DB
Power Grid
Pb
Small-Scale Battery Sizing for
Demand-Side Load Management
Load (kW)
FIG 1 Schematic of residential load connected to the grid in
the presence of the solar panels and battery.
4
3.5
3
2.5
2
1.5
1
0.5
0
4
8
12
(h)
16
20
Maximum Expected Load
Maximum Load
Minimum Expected Load
Minimum Load
FIG 2 Maximum and minimum load consumption profile.
Solar Output (kW)
3.5
3
2.5
2
1.5
1
0.5
0
4
8
12
(h)
Min Solar
Max Solar
16
IEEE POWER ELECTRONICS MAGAZINE
20
Max Expected
Min Expected
FIG 3 Maximum and minimum solar generation.
50
Moreover, for an effective demand-side management,
electricity tariffs should be considered in the optimization.
Utilities use tariffs as a powerful tool to manage their customers' load consumption behavior and to flatten the electricity demand curve [12]. Thus, considering the battery's
optimum size, to study the battery's optimal contribution
in demand-side management, tariff policy is required. This
study focuses on the effect of the inverter's nonlinear efficiency in demand-side energy management while considering electricity tariffs. To study the impact of the inverter
efficiency on the customers load profile, a residential customer with small-scale renewables is considered as a case
study model. A battery sizing approach suitable for load
management study is introduced; then, the inverter's efficiency and its impacts on the battery's (dis)charging power
and the exchanged power between the customer and distribution system are studied under two different tariffs.
z March 2021
Considering the maximum load consumption of a customer
to size the battery is not economically beneficial and will
result in over-sizing. Moreover, customers with a larger battery will be able to sell more power to the grid, which is not
necessarily beneficial for utilities, especially with the higher
penetration level of the renewables [13]. In this study, we
consider a residential customer equipped with renewables
as our case study. The case study's schematic is depicted in
Figure 1, where arrows represent direction of power flow in
the system. A double arrow denotes the battery's power
flow, emphasizing that it can be a consumer/supplier of electrical energy to the home/power grid, depending on its state
of charge (SOC).
The exchanged power, P Gt, between the customer and
the distribution system at the point of delivery is formulated as:
P Gt = Plt - P tpv + P bt (1)
Where Plt is the customer's original load consumption, P tpv
is the solar output, and P bt denotes stationary battery's (dis)
charging power at time interval t. P Gt is considered as customer's new load profile from the power system's point of
view at point of delivery (POD).
We collect historical data for the customer's load profile and solar output power generation from EPRI [14] and
NREL [15] websites. For the obtained data, the maximum
and minimum of the load demand and the solar power is
established for every hour of the day, as shown with dashed
lines in Figure 2 and Figure 3, respectively. Next, based on
the collected data, probability density functions (PDFs) are
fitted for customer's load consumption and solar power.
Using the PDF functions, we form the statistical distribution for the power consumption (load) and solar panels'
output to calculate an expected upper and lower boundary
for the load and solar output power. The expected values
IEEE Power Electronics Magazine - March 2021
Table of Contents for the Digital Edition of IEEE Power Electronics Magazine - March 2021
Contents
IEEE Power Electronics Magazine - March 2021 - Cover1
IEEE Power Electronics Magazine - March 2021 - Cover2
IEEE Power Electronics Magazine - March 2021 - Contents
IEEE Power Electronics Magazine - March 2021 - 2
IEEE Power Electronics Magazine - March 2021 - 3
IEEE Power Electronics Magazine - March 2021 - 4
IEEE Power Electronics Magazine - March 2021 - 5
IEEE Power Electronics Magazine - March 2021 - 6
IEEE Power Electronics Magazine - March 2021 - 7
IEEE Power Electronics Magazine - March 2021 - 8
IEEE Power Electronics Magazine - March 2021 - 9
IEEE Power Electronics Magazine - March 2021 - 10
IEEE Power Electronics Magazine - March 2021 - 11
IEEE Power Electronics Magazine - March 2021 - 12
IEEE Power Electronics Magazine - March 2021 - 13
IEEE Power Electronics Magazine - March 2021 - 14
IEEE Power Electronics Magazine - March 2021 - 15
IEEE Power Electronics Magazine - March 2021 - 16
IEEE Power Electronics Magazine - March 2021 - 17
IEEE Power Electronics Magazine - March 2021 - 18
IEEE Power Electronics Magazine - March 2021 - 19
IEEE Power Electronics Magazine - March 2021 - 20
IEEE Power Electronics Magazine - March 2021 - 21
IEEE Power Electronics Magazine - March 2021 - 22
IEEE Power Electronics Magazine - March 2021 - 23
IEEE Power Electronics Magazine - March 2021 - 24
IEEE Power Electronics Magazine - March 2021 - 25
IEEE Power Electronics Magazine - March 2021 - 26
IEEE Power Electronics Magazine - March 2021 - 27
IEEE Power Electronics Magazine - March 2021 - 28
IEEE Power Electronics Magazine - March 2021 - 29
IEEE Power Electronics Magazine - March 2021 - 30
IEEE Power Electronics Magazine - March 2021 - 31
IEEE Power Electronics Magazine - March 2021 - 32
IEEE Power Electronics Magazine - March 2021 - 33
IEEE Power Electronics Magazine - March 2021 - 34
IEEE Power Electronics Magazine - March 2021 - 35
IEEE Power Electronics Magazine - March 2021 - 36
IEEE Power Electronics Magazine - March 2021 - 37
IEEE Power Electronics Magazine - March 2021 - 38
IEEE Power Electronics Magazine - March 2021 - 39
IEEE Power Electronics Magazine - March 2021 - 40
IEEE Power Electronics Magazine - March 2021 - 41
IEEE Power Electronics Magazine - March 2021 - 42
IEEE Power Electronics Magazine - March 2021 - 43
IEEE Power Electronics Magazine - March 2021 - 44
IEEE Power Electronics Magazine - March 2021 - 45
IEEE Power Electronics Magazine - March 2021 - 46
IEEE Power Electronics Magazine - March 2021 - 47
IEEE Power Electronics Magazine - March 2021 - 48
IEEE Power Electronics Magazine - March 2021 - 49
IEEE Power Electronics Magazine - March 2021 - 50
IEEE Power Electronics Magazine - March 2021 - 51
IEEE Power Electronics Magazine - March 2021 - 52
IEEE Power Electronics Magazine - March 2021 - 53
IEEE Power Electronics Magazine - March 2021 - 54
IEEE Power Electronics Magazine - March 2021 - 55
IEEE Power Electronics Magazine - March 2021 - 56
IEEE Power Electronics Magazine - March 2021 - 57
IEEE Power Electronics Magazine - March 2021 - 58
IEEE Power Electronics Magazine - March 2021 - 59
IEEE Power Electronics Magazine - March 2021 - 60
IEEE Power Electronics Magazine - March 2021 - 61
IEEE Power Electronics Magazine - March 2021 - 62
IEEE Power Electronics Magazine - March 2021 - 63
IEEE Power Electronics Magazine - March 2021 - 64
IEEE Power Electronics Magazine - March 2021 - 65
IEEE Power Electronics Magazine - March 2021 - 66
IEEE Power Electronics Magazine - March 2021 - 67
IEEE Power Electronics Magazine - March 2021 - 68
IEEE Power Electronics Magazine - March 2021 - 69
IEEE Power Electronics Magazine - March 2021 - 70
IEEE Power Electronics Magazine - March 2021 - 71
IEEE Power Electronics Magazine - March 2021 - 72
IEEE Power Electronics Magazine - March 2021 - 73
IEEE Power Electronics Magazine - March 2021 - 74
IEEE Power Electronics Magazine - March 2021 - 75
IEEE Power Electronics Magazine - March 2021 - 76
IEEE Power Electronics Magazine - March 2021 - 77
IEEE Power Electronics Magazine - March 2021 - 78
IEEE Power Electronics Magazine - March 2021 - 79
IEEE Power Electronics Magazine - March 2021 - 80
IEEE Power Electronics Magazine - March 2021 - 81
IEEE Power Electronics Magazine - March 2021 - 82
IEEE Power Electronics Magazine - March 2021 - 83
IEEE Power Electronics Magazine - March 2021 - 84
IEEE Power Electronics Magazine - March 2021 - 85
IEEE Power Electronics Magazine - March 2021 - 86
IEEE Power Electronics Magazine - March 2021 - 87
IEEE Power Electronics Magazine - March 2021 - 88
IEEE Power Electronics Magazine - March 2021 - 89
IEEE Power Electronics Magazine - March 2021 - 90
IEEE Power Electronics Magazine - March 2021 - 91
IEEE Power Electronics Magazine - March 2021 - 92
IEEE Power Electronics Magazine - March 2021 - 93
IEEE Power Electronics Magazine - March 2021 - 94
IEEE Power Electronics Magazine - March 2021 - 95
IEEE Power Electronics Magazine - March 2021 - 96
IEEE Power Electronics Magazine - March 2021 - Cover3
IEEE Power Electronics Magazine - March 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2018
https://www.nxtbook.com/nxtbooks/ieee/pelcompendium_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2014
https://www.nxtbookmedia.com