IEEE Power Electronics Magazine - September 2016 - 15
background image licensed by graphic stock
Even with GaN's die-size advantage due to very low specific on-resistance (0.2-0.5 Ω-mm2 at 650 V today) compared to state-of-the-art silicon superjunction technology
(1-2 Ω-mm2), this led to extremely expensive prototypes.
Lateral devices were prototyped, and GaN-on-SiC showed
promise due to improved thermal performance, but devices
were still too expensive for power applications. Devices
using 4-in (100-mm) GaN-on-Si wafers were developed,
applying lessons learned from early RF transistor attempts
to achieve lower cost. Initially, these devices were limited to
depletion mode (dMode or normally on) types and suffered
from the current collapse or dynamic RDS(ON) phenomenon
and trap-related long-term stress instability that prevented
their adoption. Vertical GaN device development is ongoing
today in early stages but relies on the development of bulk
GaN substrate growth; it is very expensive and still mostly
limited to 2-3-in wafer diameters. Finally, 6-in (150-mm)
production-quality GaN-on-Si wafers have become avail-
able [3] for high-performance enhancement mode (eMode
or normally off) lateral GaN devices, using existing foundry
processes. The result is the manufacturing of high-volume,
cost-effective switches and power ICs.
GaN Versus Si, GaN Versus SiC
GaN and SiC are wide-bandgap (WBG) devices. This refers
to the energy required to free an electron from its orbit
around the nucleus and allow it to move freely through the
solid. The bandgap determines the electric field, as measured in electron-V (eV), that the solid is able to withstand. Si
has 1.1 eV, SiC has 3.2 eV, and GaN has a bandgap of 3.4 eV.
As WBG material allows high electric fields, depletion
regions can be very short or narrow, so device structures can
have high carrier density and be packed very densely. A typical 650-V lateral GaN transistor can support over 800 V and
has a drain drift region of 10-20 nm, or about 40-80 V/nm.
This is substantially above the theoretical limit of silicon at
September 2016
z IEEE PowEr ElEctronIcs MagazInE
15
Table of Contents for the Digital Edition of IEEE Power Electronics Magazine - September 2016
IEEE Power Electronics Magazine - September 2016 - Cover1
IEEE Power Electronics Magazine - September 2016 - Cover2
IEEE Power Electronics Magazine - September 2016 - 1
IEEE Power Electronics Magazine - September 2016 - 2
IEEE Power Electronics Magazine - September 2016 - 3
IEEE Power Electronics Magazine - September 2016 - 4
IEEE Power Electronics Magazine - September 2016 - 5
IEEE Power Electronics Magazine - September 2016 - 6
IEEE Power Electronics Magazine - September 2016 - 7
IEEE Power Electronics Magazine - September 2016 - 8
IEEE Power Electronics Magazine - September 2016 - 9
IEEE Power Electronics Magazine - September 2016 - 10
IEEE Power Electronics Magazine - September 2016 - 11
IEEE Power Electronics Magazine - September 2016 - 12
IEEE Power Electronics Magazine - September 2016 - 13
IEEE Power Electronics Magazine - September 2016 - 14
IEEE Power Electronics Magazine - September 2016 - 15
IEEE Power Electronics Magazine - September 2016 - 16
IEEE Power Electronics Magazine - September 2016 - 17
IEEE Power Electronics Magazine - September 2016 - 18
IEEE Power Electronics Magazine - September 2016 - 19
IEEE Power Electronics Magazine - September 2016 - 20
IEEE Power Electronics Magazine - September 2016 - 21
IEEE Power Electronics Magazine - September 2016 - 22
IEEE Power Electronics Magazine - September 2016 - 23
IEEE Power Electronics Magazine - September 2016 - 24
IEEE Power Electronics Magazine - September 2016 - 25
IEEE Power Electronics Magazine - September 2016 - 26
IEEE Power Electronics Magazine - September 2016 - 27
IEEE Power Electronics Magazine - September 2016 - 28
IEEE Power Electronics Magazine - September 2016 - 29
IEEE Power Electronics Magazine - September 2016 - 30
IEEE Power Electronics Magazine - September 2016 - 31
IEEE Power Electronics Magazine - September 2016 - 32
IEEE Power Electronics Magazine - September 2016 - 33
IEEE Power Electronics Magazine - September 2016 - 34
IEEE Power Electronics Magazine - September 2016 - 35
IEEE Power Electronics Magazine - September 2016 - 36
IEEE Power Electronics Magazine - September 2016 - 37
IEEE Power Electronics Magazine - September 2016 - 38
IEEE Power Electronics Magazine - September 2016 - 39
IEEE Power Electronics Magazine - September 2016 - 40
IEEE Power Electronics Magazine - September 2016 - 41
IEEE Power Electronics Magazine - September 2016 - 42
IEEE Power Electronics Magazine - September 2016 - 43
IEEE Power Electronics Magazine - September 2016 - 44
IEEE Power Electronics Magazine - September 2016 - 45
IEEE Power Electronics Magazine - September 2016 - 46
IEEE Power Electronics Magazine - September 2016 - 47
IEEE Power Electronics Magazine - September 2016 - 48
IEEE Power Electronics Magazine - September 2016 - 49
IEEE Power Electronics Magazine - September 2016 - 50
IEEE Power Electronics Magazine - September 2016 - 51
IEEE Power Electronics Magazine - September 2016 - 52
IEEE Power Electronics Magazine - September 2016 - 53
IEEE Power Electronics Magazine - September 2016 - 54
IEEE Power Electronics Magazine - September 2016 - 55
IEEE Power Electronics Magazine - September 2016 - 56
IEEE Power Electronics Magazine - September 2016 - 57
IEEE Power Electronics Magazine - September 2016 - 58
IEEE Power Electronics Magazine - September 2016 - 59
IEEE Power Electronics Magazine - September 2016 - 60
IEEE Power Electronics Magazine - September 2016 - Cover3
IEEE Power Electronics Magazine - September 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2023
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2022
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2021
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2020
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2019
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2018
https://www.nxtbook.com/nxtbooks/ieee/pelcompendium_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2018
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2017
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2016
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2015
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_december2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_september2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_june2014
https://www.nxtbook.com/nxtbooks/ieee/powerelectronics_march2014
https://www.nxtbookmedia.com