IEEE Robotics & Automation Magazine - December 2014 - 97
Remote Controller
2-D LUT Early Stance Stance
2-D LUT Midstance Control
i
2-D LUT Late Stance BM
T
T
i
i
#
v
v
Amputee
v
Finite-State
Machine
Walking-Speed
and Cadence
Estimator
Tdes
Swing
Control
MinimumJerk
Trajectory
Generator
+
-
Robotic
Prosthesis
Leg Dynamic
Model
+
PD
+
Embedded
Sensors:
Position, Torque,
GRF, IMU
Embedded
Control:
Closed-Loop
Torque Control
Ground
CAN Bus
Figure 2. The block diagram of the robotic prosthesis controller. The controller receives input signals from embedded sensors on the
prosthesis through a high-speed CAN bus. By combining the prosthesis outputs with the joint angle and GRF, the remote walking-speed
estimator computes the forward speed in the sagittal plane ^v h . At the same time, based on the joint angle, velocity, and GRF, the finite-state
machine segments the gait cycle into four parts: early, midstance and late stance and swing phase. For each stance subphase, two 2-D LUTs,
implementing normalized able-bodied torque-angle curves for ankle and knee joints, provide the desired torques as a function of current angle
^i h, walking speed ^v h, and patient BM. In the swing phase, a minimum-jerk trajectory generator defines the desired angle for the ankle and
knee joints based on the stance-phase duration. The desired joint torques result from the sum of a feed-forward torque command, obtained
through a dynamic model of the prosthesis, and a proportional-derivative (PD) closed-loop position control. Finally, the torque references ^Tdes h
are transmitted to the closed-loop, low-level, embedded controller on the prosthesis.
thigh and foot orientation using the prosthetic ankle and knee
angles. Exploiting a simple three-segment planar model of the
leg, we compute the forward velocity of the hip in the sagittal
plane using gyroscope data during the stance phase and by integrating accelerometer outputs during the swing phase. As
the forward velocity profile has an almost sinusoidal trend
with half the duration of the stride [22], we estimate the walking velocity twice during each stride. The first estimate is the
average of the forward velocity during the early and midstance
phases, which accounts for half of the stride duration. The second estimate is the average during the late stance and swing
phase, which accounts for the second half of the stride. The
error of the walking-speed estimate on the treadmill has been
estimated experimentally to be 8%, in agreement with findings
of other researchers using a comparable approach [30]. More
accurate walking-speed measurements could be obtained by
segmenting the gait cycle in multiple parts, as shown in [31].
Walking Controller
The second stage of the controller is responsible for defining
the desired torque profiles to be applied at the ankle and
knee joint, based on current estimates of gait phase and
walking speed.
In the stance phase, the torque reference for the ankle and
knee joint is obtained from intact-leg quasistiffness profiles,
as extrapolated from able-bodied studies [22]. In particular,
we encoded intact-leg torque-angle curves for two different
walking speeds, 0.5 and 1.75 m/s, on bidimensional (2-D)
lookup tables (LUTs). Each joint and subphase of stance has
GRF < 5% BM
Lifting
Standing
GRF > 5% BM
Shank
< 10°/s
Speed
Walking
Late
Stance
(III " IV)
Shank Angle > 5°
Ankle Velocity < 0°/s
III
Midstance
(II " III)
Ankle
Velocity
> 0°/s
GRF
< 5% BM
IV
Swing
(IV " I)
Shank
> 10°/s
Speed
II
I
GRF > 5% BM
Early
Stance
(I " II)
Figure 3. The finite-state machine. Able-bodied ankle quasistiffness is
shown in the center of the figure; ideal transitions are indicated with
roman numerals (I, II, III, and IV).
a different 2-D LUT that inputs the current joint angle and
walking-speed estimate and outputs the desired joint torque
normalized by the BM of the patient. A specific torque-angle
curve for any possible value of walking speed and angle is
then obtained by interpolation. Saturation occurs for input
values outside the LUT boundaries. Figure 4 shows the
torque-angle curves embedded in the 2-D LUTs for the
ankle and knee joints; different colors represent subphases of
December 2014
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
97
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - December 2014
IEEE Robotics & Automation Magazine - December 2014 - Cover1
IEEE Robotics & Automation Magazine - December 2014 - Cover2
IEEE Robotics & Automation Magazine - December 2014 - 1
IEEE Robotics & Automation Magazine - December 2014 - 2
IEEE Robotics & Automation Magazine - December 2014 - 3
IEEE Robotics & Automation Magazine - December 2014 - 4
IEEE Robotics & Automation Magazine - December 2014 - 5
IEEE Robotics & Automation Magazine - December 2014 - 6
IEEE Robotics & Automation Magazine - December 2014 - 7
IEEE Robotics & Automation Magazine - December 2014 - 8
IEEE Robotics & Automation Magazine - December 2014 - 9
IEEE Robotics & Automation Magazine - December 2014 - 10
IEEE Robotics & Automation Magazine - December 2014 - 11
IEEE Robotics & Automation Magazine - December 2014 - 12
IEEE Robotics & Automation Magazine - December 2014 - 13
IEEE Robotics & Automation Magazine - December 2014 - 14
IEEE Robotics & Automation Magazine - December 2014 - 15
IEEE Robotics & Automation Magazine - December 2014 - 16
IEEE Robotics & Automation Magazine - December 2014 - 17
IEEE Robotics & Automation Magazine - December 2014 - 18
IEEE Robotics & Automation Magazine - December 2014 - 19
IEEE Robotics & Automation Magazine - December 2014 - 20
IEEE Robotics & Automation Magazine - December 2014 - 21
IEEE Robotics & Automation Magazine - December 2014 - 22
IEEE Robotics & Automation Magazine - December 2014 - 23
IEEE Robotics & Automation Magazine - December 2014 - 24
IEEE Robotics & Automation Magazine - December 2014 - 25
IEEE Robotics & Automation Magazine - December 2014 - 26
IEEE Robotics & Automation Magazine - December 2014 - 27
IEEE Robotics & Automation Magazine - December 2014 - 28
IEEE Robotics & Automation Magazine - December 2014 - 29
IEEE Robotics & Automation Magazine - December 2014 - 30
IEEE Robotics & Automation Magazine - December 2014 - 31
IEEE Robotics & Automation Magazine - December 2014 - 32
IEEE Robotics & Automation Magazine - December 2014 - 33
IEEE Robotics & Automation Magazine - December 2014 - 34
IEEE Robotics & Automation Magazine - December 2014 - 35
IEEE Robotics & Automation Magazine - December 2014 - 36
IEEE Robotics & Automation Magazine - December 2014 - 37
IEEE Robotics & Automation Magazine - December 2014 - 38
IEEE Robotics & Automation Magazine - December 2014 - 39
IEEE Robotics & Automation Magazine - December 2014 - 40
IEEE Robotics & Automation Magazine - December 2014 - 41
IEEE Robotics & Automation Magazine - December 2014 - 42
IEEE Robotics & Automation Magazine - December 2014 - 43
IEEE Robotics & Automation Magazine - December 2014 - 44
IEEE Robotics & Automation Magazine - December 2014 - 45
IEEE Robotics & Automation Magazine - December 2014 - 46
IEEE Robotics & Automation Magazine - December 2014 - 47
IEEE Robotics & Automation Magazine - December 2014 - 48
IEEE Robotics & Automation Magazine - December 2014 - 49
IEEE Robotics & Automation Magazine - December 2014 - 50
IEEE Robotics & Automation Magazine - December 2014 - 51
IEEE Robotics & Automation Magazine - December 2014 - 52
IEEE Robotics & Automation Magazine - December 2014 - 53
IEEE Robotics & Automation Magazine - December 2014 - 54
IEEE Robotics & Automation Magazine - December 2014 - 55
IEEE Robotics & Automation Magazine - December 2014 - 56
IEEE Robotics & Automation Magazine - December 2014 - 57
IEEE Robotics & Automation Magazine - December 2014 - 58
IEEE Robotics & Automation Magazine - December 2014 - 59
IEEE Robotics & Automation Magazine - December 2014 - 60
IEEE Robotics & Automation Magazine - December 2014 - 61
IEEE Robotics & Automation Magazine - December 2014 - 62
IEEE Robotics & Automation Magazine - December 2014 - 63
IEEE Robotics & Automation Magazine - December 2014 - 64
IEEE Robotics & Automation Magazine - December 2014 - 65
IEEE Robotics & Automation Magazine - December 2014 - 66
IEEE Robotics & Automation Magazine - December 2014 - 67
IEEE Robotics & Automation Magazine - December 2014 - 68
IEEE Robotics & Automation Magazine - December 2014 - 69
IEEE Robotics & Automation Magazine - December 2014 - 70
IEEE Robotics & Automation Magazine - December 2014 - 71
IEEE Robotics & Automation Magazine - December 2014 - 72
IEEE Robotics & Automation Magazine - December 2014 - 73
IEEE Robotics & Automation Magazine - December 2014 - 74
IEEE Robotics & Automation Magazine - December 2014 - 75
IEEE Robotics & Automation Magazine - December 2014 - 76
IEEE Robotics & Automation Magazine - December 2014 - 77
IEEE Robotics & Automation Magazine - December 2014 - 78
IEEE Robotics & Automation Magazine - December 2014 - 79
IEEE Robotics & Automation Magazine - December 2014 - 80
IEEE Robotics & Automation Magazine - December 2014 - 81
IEEE Robotics & Automation Magazine - December 2014 - 82
IEEE Robotics & Automation Magazine - December 2014 - 83
IEEE Robotics & Automation Magazine - December 2014 - 84
IEEE Robotics & Automation Magazine - December 2014 - 85
IEEE Robotics & Automation Magazine - December 2014 - 86
IEEE Robotics & Automation Magazine - December 2014 - 87
IEEE Robotics & Automation Magazine - December 2014 - 88
IEEE Robotics & Automation Magazine - December 2014 - 89
IEEE Robotics & Automation Magazine - December 2014 - 90
IEEE Robotics & Automation Magazine - December 2014 - 91
IEEE Robotics & Automation Magazine - December 2014 - 92
IEEE Robotics & Automation Magazine - December 2014 - 93
IEEE Robotics & Automation Magazine - December 2014 - 94
IEEE Robotics & Automation Magazine - December 2014 - 95
IEEE Robotics & Automation Magazine - December 2014 - 96
IEEE Robotics & Automation Magazine - December 2014 - 97
IEEE Robotics & Automation Magazine - December 2014 - 98
IEEE Robotics & Automation Magazine - December 2014 - 99
IEEE Robotics & Automation Magazine - December 2014 - 100
IEEE Robotics & Automation Magazine - December 2014 - 101
IEEE Robotics & Automation Magazine - December 2014 - 102
IEEE Robotics & Automation Magazine - December 2014 - 103
IEEE Robotics & Automation Magazine - December 2014 - 104
IEEE Robotics & Automation Magazine - December 2014 - 105
IEEE Robotics & Automation Magazine - December 2014 - 106
IEEE Robotics & Automation Magazine - December 2014 - 107
IEEE Robotics & Automation Magazine - December 2014 - 108
IEEE Robotics & Automation Magazine - December 2014 - 109
IEEE Robotics & Automation Magazine - December 2014 - 110
IEEE Robotics & Automation Magazine - December 2014 - 111
IEEE Robotics & Automation Magazine - December 2014 - 112
IEEE Robotics & Automation Magazine - December 2014 - 113
IEEE Robotics & Automation Magazine - December 2014 - 114
IEEE Robotics & Automation Magazine - December 2014 - 115
IEEE Robotics & Automation Magazine - December 2014 - 116
IEEE Robotics & Automation Magazine - December 2014 - 117
IEEE Robotics & Automation Magazine - December 2014 - 118
IEEE Robotics & Automation Magazine - December 2014 - 119
IEEE Robotics & Automation Magazine - December 2014 - 120
IEEE Robotics & Automation Magazine - December 2014 - 121
IEEE Robotics & Automation Magazine - December 2014 - 122
IEEE Robotics & Automation Magazine - December 2014 - 123
IEEE Robotics & Automation Magazine - December 2014 - 124
IEEE Robotics & Automation Magazine - December 2014 - 125
IEEE Robotics & Automation Magazine - December 2014 - 126
IEEE Robotics & Automation Magazine - December 2014 - 127
IEEE Robotics & Automation Magazine - December 2014 - 128
IEEE Robotics & Automation Magazine - December 2014 - 129
IEEE Robotics & Automation Magazine - December 2014 - 130
IEEE Robotics & Automation Magazine - December 2014 - 131
IEEE Robotics & Automation Magazine - December 2014 - 132
IEEE Robotics & Automation Magazine - December 2014 - 133
IEEE Robotics & Automation Magazine - December 2014 - 134
IEEE Robotics & Automation Magazine - December 2014 - 135
IEEE Robotics & Automation Magazine - December 2014 - 136
IEEE Robotics & Automation Magazine - December 2014 - Cover3
IEEE Robotics & Automation Magazine - December 2014 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com