IEEE Robotics & Automation Magazine - December 2015 - 18

the key to safe behavior. For example, balance will always be
considered a top-priority objective, while other objectives,
such as visibility and posture, are accomplished only if possible but without disturbing the balance (or the possible manipulation or locomotion tasks). We refer to this hierarchy of
motion objectives as the stack of tasks (SoT). The key components of our current implementation are able to handle a hierarchy of inequality objectives while ensuring the dynamic
consistency using inverse dynamics with real-time
performances.
Task Function Approach
Let C be the configuration space, M the task space, Te M
the tangent space of M at some point e, and U an arbitrary
control space linearly linked to the configuration tangent
space Tq C. The definition of a task comprises three components: 1) the task function e: C " M, 2) the reference behavior given by a vector field of M, eo ) ! Te M, and 3) the
differential map G: U " Te M relating the task to the control input. This map defines the direct relation between the
reference vector field and the control space as eo + d = Gu,
where u is the control signal and d is the task drift. The control law u ) meeting the reference behavior is obtained as
u ) = G # (eo ) + d), where {.} # is any reflexive generalized inverse. Among the possible inverses, the Moore-Penrose pseudoinverse {.} + is generally chosen, but other inverses (such as
weighted inverses) can also be used.
This generic formulation directly corresponds to IK, with
U = Tq C, u = qo , and G = ^2e/2qh as the task function tangent application. The formulation also covers inverse dynamics [12]: the reference behavior is the expected task
acceleration ep ) ! Te M, and the control input is the joint
torques vector x ! U. In this case, the approach consists of
finding the desired torque control input x * that generates the
reference behavior ep ), the joint acceleration qp being a side
variable that might not need to be explicitly computed [24].
Hierarchical Quadratic Program Solver
Finding the control that satisfies instantaneous constraints is
a quadratic problem (QP) whose least-norm solution is given
by the pseudoinverse. The redundancy of the robot with respect to the task is the linear set of controls that do not cause
any change in the task spaces, and is given by the null-space
of the tangent application G. A hierarchy is typically obtained by projecting the secondary objectives onto the null
spaces of the higher priority objectives. Such a solution is
known for handling tasks written as equalities (typically
reaching or pointing tasks).
But the robot control also needs to handle tasks like joint
angle, speed and power limits, autocollisions, obstacle avoidance, singularity avoidance, balance constraints, and visibility
of landmarks in the field of view or behind occlusion. All of
these tasks are inequalities. Thus, inequalities represent important tasks and need to be considered. Some solutions regarding
inequalities are potential functions [11], damping functions
[3], or clamping [23] for joint angle limits. The problem with
18

*

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

DECEMBER 2015

these methods is their inability to deal with inequality constraints at arbitrary levels of the hierarchy.
Consider a generic linear system with n linear equalities or
inequalities of the form b i # C i x # b i, where x is the optimization variable, C i is a coefficient matrix, b i and b i are the
lower and upper bounds respectively, and i = 1, g, n represents the priority in the hierarchy. (With this representation
equalities are a special case when b i = b i, and single-sided inequalities are special cases when b i =-3 or b i =+3.) The
lexicographic order (i) ' (ii) ' (iii) ' g, where (i) has the
highest priority, is used to represent the hierarchy. When considering only one objective, the optimum x satisfying the objective is simply obtained by solving the associated QP. For a
hierarchy of multiple objectives, the system is written as a hierarchical QP (HQP) so that if level i has higher priority over
level i + 1, then level i + 1 should be fulfilled as close as possible but without interfering with level i and the other higher
priority levels.
Our team has shown that the optimum of an HQP can be
defined by a cascade of QPs [10]. At each level i of the hierarchy, the QP gives the solution that satisfies the best level i
under the constraint to preserve the optimum found for the
i - 1 first levels. The method is more a formal definition
than an efficient algorithm, provided that when the cascade
is computed using iterative calls to a QP solver, such an implementation is computationally inefficient. In [6], we have
proposed an HQP solver based on a variation of one classical
QP resolution algorithm, the primal active-set solver. First, a
classical primal active-set algorithm finds the active inequality constraints and turns them into equalities; then, a hierarchized complete orthogonal decomposition is computed to
find the optimum of the partial equality problem. Finally, the
two steps are iterated until convergence.
SoT Using Inverse Dynamics
One of the major interests of OSID is to handle limited actuation systems. Humanoid robots, which are floating-based systems, are a particular case of underactuated systems due to
the partial actuation that is completed when they make contact with the environment. The configuration of a humanoid
robot is represented by generalized coordinates q = (x b, q a),
where x b represents the position and orientation of the robot
free-floating body and q a represents the n actuated joints of
the robot. When the robot is in contact with the environment,
the dynamic equation of the system is
Mqp + b + J Tc fc = S T x,

(1)

where M is the generalized inertia matrix; b is the dynamic
drift vector, including Coriolis, centrifugal, and gravity forces;
fc is the vector of the three-dimensional (3-D) contact forces
applied at the contact points; x c, J c = ^2x c 2qh is the
Jacobian of those contact points; x is the actuated torque vector; and S = [0 I] is a matrix selecting the actuated joints. Let
f 9c and x 9c be the vectors containing only the components of
fc and x c normal to the contact surface. The complementarity



Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - December 2015

IEEE Robotics & Automation Magazine - December 2015 - Cover1
IEEE Robotics & Automation Magazine - December 2015 - Cover2
IEEE Robotics & Automation Magazine - December 2015 - 1
IEEE Robotics & Automation Magazine - December 2015 - 2
IEEE Robotics & Automation Magazine - December 2015 - 3
IEEE Robotics & Automation Magazine - December 2015 - 4
IEEE Robotics & Automation Magazine - December 2015 - 5
IEEE Robotics & Automation Magazine - December 2015 - 6
IEEE Robotics & Automation Magazine - December 2015 - 7
IEEE Robotics & Automation Magazine - December 2015 - 8
IEEE Robotics & Automation Magazine - December 2015 - 9
IEEE Robotics & Automation Magazine - December 2015 - 10
IEEE Robotics & Automation Magazine - December 2015 - 11
IEEE Robotics & Automation Magazine - December 2015 - 12
IEEE Robotics & Automation Magazine - December 2015 - 13
IEEE Robotics & Automation Magazine - December 2015 - 14
IEEE Robotics & Automation Magazine - December 2015 - 15
IEEE Robotics & Automation Magazine - December 2015 - 16
IEEE Robotics & Automation Magazine - December 2015 - 17
IEEE Robotics & Automation Magazine - December 2015 - 18
IEEE Robotics & Automation Magazine - December 2015 - 19
IEEE Robotics & Automation Magazine - December 2015 - 20
IEEE Robotics & Automation Magazine - December 2015 - 21
IEEE Robotics & Automation Magazine - December 2015 - 22
IEEE Robotics & Automation Magazine - December 2015 - 23
IEEE Robotics & Automation Magazine - December 2015 - 24
IEEE Robotics & Automation Magazine - December 2015 - 25
IEEE Robotics & Automation Magazine - December 2015 - 26
IEEE Robotics & Automation Magazine - December 2015 - 27
IEEE Robotics & Automation Magazine - December 2015 - 28
IEEE Robotics & Automation Magazine - December 2015 - 29
IEEE Robotics & Automation Magazine - December 2015 - 30
IEEE Robotics & Automation Magazine - December 2015 - 31
IEEE Robotics & Automation Magazine - December 2015 - 32
IEEE Robotics & Automation Magazine - December 2015 - 33
IEEE Robotics & Automation Magazine - December 2015 - 34
IEEE Robotics & Automation Magazine - December 2015 - 35
IEEE Robotics & Automation Magazine - December 2015 - 36
IEEE Robotics & Automation Magazine - December 2015 - 37
IEEE Robotics & Automation Magazine - December 2015 - 38
IEEE Robotics & Automation Magazine - December 2015 - 39
IEEE Robotics & Automation Magazine - December 2015 - 40
IEEE Robotics & Automation Magazine - December 2015 - 41
IEEE Robotics & Automation Magazine - December 2015 - 42
IEEE Robotics & Automation Magazine - December 2015 - 43
IEEE Robotics & Automation Magazine - December 2015 - 44
IEEE Robotics & Automation Magazine - December 2015 - 45
IEEE Robotics & Automation Magazine - December 2015 - 46
IEEE Robotics & Automation Magazine - December 2015 - 47
IEEE Robotics & Automation Magazine - December 2015 - 48
IEEE Robotics & Automation Magazine - December 2015 - 49
IEEE Robotics & Automation Magazine - December 2015 - 50
IEEE Robotics & Automation Magazine - December 2015 - 51
IEEE Robotics & Automation Magazine - December 2015 - 52
IEEE Robotics & Automation Magazine - December 2015 - 53
IEEE Robotics & Automation Magazine - December 2015 - 54
IEEE Robotics & Automation Magazine - December 2015 - 55
IEEE Robotics & Automation Magazine - December 2015 - 56
IEEE Robotics & Automation Magazine - December 2015 - 57
IEEE Robotics & Automation Magazine - December 2015 - 58
IEEE Robotics & Automation Magazine - December 2015 - 59
IEEE Robotics & Automation Magazine - December 2015 - 60
IEEE Robotics & Automation Magazine - December 2015 - 61
IEEE Robotics & Automation Magazine - December 2015 - 62
IEEE Robotics & Automation Magazine - December 2015 - 63
IEEE Robotics & Automation Magazine - December 2015 - 64
IEEE Robotics & Automation Magazine - December 2015 - 65
IEEE Robotics & Automation Magazine - December 2015 - 66
IEEE Robotics & Automation Magazine - December 2015 - 67
IEEE Robotics & Automation Magazine - December 2015 - 68
IEEE Robotics & Automation Magazine - December 2015 - 69
IEEE Robotics & Automation Magazine - December 2015 - 70
IEEE Robotics & Automation Magazine - December 2015 - 71
IEEE Robotics & Automation Magazine - December 2015 - 72
IEEE Robotics & Automation Magazine - December 2015 - 73
IEEE Robotics & Automation Magazine - December 2015 - 74
IEEE Robotics & Automation Magazine - December 2015 - 75
IEEE Robotics & Automation Magazine - December 2015 - 76
IEEE Robotics & Automation Magazine - December 2015 - 77
IEEE Robotics & Automation Magazine - December 2015 - 78
IEEE Robotics & Automation Magazine - December 2015 - 79
IEEE Robotics & Automation Magazine - December 2015 - 80
IEEE Robotics & Automation Magazine - December 2015 - 81
IEEE Robotics & Automation Magazine - December 2015 - 82
IEEE Robotics & Automation Magazine - December 2015 - 83
IEEE Robotics & Automation Magazine - December 2015 - 84
IEEE Robotics & Automation Magazine - December 2015 - 85
IEEE Robotics & Automation Magazine - December 2015 - 86
IEEE Robotics & Automation Magazine - December 2015 - 87
IEEE Robotics & Automation Magazine - December 2015 - 88
IEEE Robotics & Automation Magazine - December 2015 - 89
IEEE Robotics & Automation Magazine - December 2015 - 90
IEEE Robotics & Automation Magazine - December 2015 - 91
IEEE Robotics & Automation Magazine - December 2015 - 92
IEEE Robotics & Automation Magazine - December 2015 - 93
IEEE Robotics & Automation Magazine - December 2015 - 94
IEEE Robotics & Automation Magazine - December 2015 - 95
IEEE Robotics & Automation Magazine - December 2015 - 96
IEEE Robotics & Automation Magazine - December 2015 - 97
IEEE Robotics & Automation Magazine - December 2015 - 98
IEEE Robotics & Automation Magazine - December 2015 - 99
IEEE Robotics & Automation Magazine - December 2015 - 100
IEEE Robotics & Automation Magazine - December 2015 - 101
IEEE Robotics & Automation Magazine - December 2015 - 102
IEEE Robotics & Automation Magazine - December 2015 - 103
IEEE Robotics & Automation Magazine - December 2015 - 104
IEEE Robotics & Automation Magazine - December 2015 - 105
IEEE Robotics & Automation Magazine - December 2015 - 106
IEEE Robotics & Automation Magazine - December 2015 - 107
IEEE Robotics & Automation Magazine - December 2015 - 108
IEEE Robotics & Automation Magazine - December 2015 - 109
IEEE Robotics & Automation Magazine - December 2015 - 110
IEEE Robotics & Automation Magazine - December 2015 - 111
IEEE Robotics & Automation Magazine - December 2015 - 112
IEEE Robotics & Automation Magazine - December 2015 - 113
IEEE Robotics & Automation Magazine - December 2015 - 114
IEEE Robotics & Automation Magazine - December 2015 - 115
IEEE Robotics & Automation Magazine - December 2015 - 116
IEEE Robotics & Automation Magazine - December 2015 - 117
IEEE Robotics & Automation Magazine - December 2015 - 118
IEEE Robotics & Automation Magazine - December 2015 - 119
IEEE Robotics & Automation Magazine - December 2015 - 120
IEEE Robotics & Automation Magazine - December 2015 - 121
IEEE Robotics & Automation Magazine - December 2015 - 122
IEEE Robotics & Automation Magazine - December 2015 - 123
IEEE Robotics & Automation Magazine - December 2015 - 124
IEEE Robotics & Automation Magazine - December 2015 - 125
IEEE Robotics & Automation Magazine - December 2015 - 126
IEEE Robotics & Automation Magazine - December 2015 - 127
IEEE Robotics & Automation Magazine - December 2015 - 128
IEEE Robotics & Automation Magazine - December 2015 - 129
IEEE Robotics & Automation Magazine - December 2015 - 130
IEEE Robotics & Automation Magazine - December 2015 - 131
IEEE Robotics & Automation Magazine - December 2015 - 132
IEEE Robotics & Automation Magazine - December 2015 - 133
IEEE Robotics & Automation Magazine - December 2015 - 134
IEEE Robotics & Automation Magazine - December 2015 - 135
IEEE Robotics & Automation Magazine - December 2015 - 136
IEEE Robotics & Automation Magazine - December 2015 - 137
IEEE Robotics & Automation Magazine - December 2015 - 138
IEEE Robotics & Automation Magazine - December 2015 - 139
IEEE Robotics & Automation Magazine - December 2015 - 140
IEEE Robotics & Automation Magazine - December 2015 - 141
IEEE Robotics & Automation Magazine - December 2015 - 142
IEEE Robotics & Automation Magazine - December 2015 - 143
IEEE Robotics & Automation Magazine - December 2015 - 144
IEEE Robotics & Automation Magazine - December 2015 - 145
IEEE Robotics & Automation Magazine - December 2015 - 146
IEEE Robotics & Automation Magazine - December 2015 - 147
IEEE Robotics & Automation Magazine - December 2015 - 148
IEEE Robotics & Automation Magazine - December 2015 - 149
IEEE Robotics & Automation Magazine - December 2015 - 150
IEEE Robotics & Automation Magazine - December 2015 - 151
IEEE Robotics & Automation Magazine - December 2015 - 152
IEEE Robotics & Automation Magazine - December 2015 - 153
IEEE Robotics & Automation Magazine - December 2015 - 154
IEEE Robotics & Automation Magazine - December 2015 - 155
IEEE Robotics & Automation Magazine - December 2015 - 156
IEEE Robotics & Automation Magazine - December 2015 - 157
IEEE Robotics & Automation Magazine - December 2015 - 158
IEEE Robotics & Automation Magazine - December 2015 - 159
IEEE Robotics & Automation Magazine - December 2015 - 160
IEEE Robotics & Automation Magazine - December 2015 - 161
IEEE Robotics & Automation Magazine - December 2015 - 162
IEEE Robotics & Automation Magazine - December 2015 - 163
IEEE Robotics & Automation Magazine - December 2015 - 164
IEEE Robotics & Automation Magazine - December 2015 - 165
IEEE Robotics & Automation Magazine - December 2015 - 166
IEEE Robotics & Automation Magazine - December 2015 - 167
IEEE Robotics & Automation Magazine - December 2015 - 168
IEEE Robotics & Automation Magazine - December 2015 - Cover3
IEEE Robotics & Automation Magazine - December 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com