IEEE Robotics & Automation Magazine - December 2016 - 119
Automatic Ultrasound Acquisition
Medical ultrasound is an important imaging modality that
can provide real-time evaluation of patients. Compared with
many other modalities, an ultrasound scanner is portable
and substantially lower in cost, and it does not use harmful
ionizing radiation. In many intraoperative cases, ultrasound
is especially useful, as it can guide the surgery by providing
real-time images of otherwise hidden devices and anatomy.
In this study, we were particularly interested in TEE, which
can be used for diagnosing heart disease and guiding cardiac surgical procedures using either two-dimensional (2-D)
or three-dimensional (3-D) ultrasound imaging [1], [2].
However, similar to acquisitions of extracorporeal ultrasound, the operation of this technique still requires manual
control, which greatly depends on the onsite operator. The
onsite operation of ultrasound systems usually exposes
operators to an undesirable working environment that could
potentially cause occupational injuries [3]. Particularly for
TEE in minimally invasive interventional procedures, the
operator may be exposed to ionizing radiation from X-ray
C-arms and have to wear uncomfortable and bulky shielding [4]. These problems may be addressed by remotely operated ultrasound systems employing robotic techniques. Our
previous design of the first TEE robot demonstrated the
capability of remote control [5].
However, remote-controlled ultrasound systems are not
adequate to solve the problem of general usability of medical
ultrasound, as those systems still require a manual control
approach that is tedious, time consuming, and, most of all,
entirely operator dependent. In both developed and developing countries, because of the requirement for highly specialized skills during ultrasound acquisition, small clinics in
remote locations are unlikely to have ultrasound experts available most of the time [6]. It has been suggested that the lack of
ultrasound training is one of the biggest barriers to reliable
image acquisitions [7], [8]. Skill and training issues are made
worse since the views of the heart can be relatively complicated to understand. Therefore, intelligence toward automatic or
semiautomatic ultrasound acquisitions has to be built into
these robotic medical ultrasound systems to achieve a breakthrough in the utilization of ultrasound with robots.
There are a few existing publications on robotic-assisted
acquisitions for extracorporeal ultrasound [9]. Several works
have explored visual servoing techniques for tracking particular features, for example, tracking the carotid artery using
an extracorporeal ultrasound robot [10]. Additional projects
have been extended by other researchers to automatic scanning of the carotid artery using motion compensation [11].
The idea of a vision-based, self-guided system is also
employed in other types of medical robots, such as an eye-inhand endoscopic robotic system that is used for physiology
motion rejection in natural orifice transluminal endoscopic
surgery, where the robot is used for tracking an area of interest despite breathing motion [12]. In other robotic domains,
visual servoing is also one of the most important techniques
widely used for manufacturing, object picking, teleoperation,
missile tracking, and so forth. A comprehensive review of
those works is given in [13]. However, using visual servoing
techniques based on feature extraction for cardiac ultrasound acquisitions is challenging due to the complexity of
the heart structure. Because global information of the heart
from magnetic resonance (MR) or computed tomography
(CT) images always exists in many cardiac surgical procedures, we believe that using preplanned motion and multimodality registration is the preferred approach to deal with
vision and motion. To our knowledge, no such system has
been proposed for cardiac echocardiography, and we present
a unique study providing a complete solution for automatic
imaging of the heart.
In this study, we provided a view-planning solution for
transesophageal ultrasound views in patient-specific data
during cardiac procedures based on a preprocedure CT or
MR imaging (MRI) scan. We also developed a method for
automatic acquisition of these planned views using our
robotic system. This method, though primarily designed for
TEE, has the potential to be adapted for other intraoperative
ultrasound, such as transrectal or intracardiac imaging.
Other aspects of the proposed TEE robot, including safety
and force sensing, were briefly discussed in our previous
paper [5]. Because this article focuses on automation and
tracking, the topics of safety and force sensing are not
included here.
Robotic Transesophageal Ultrasound System
We have previously developed an add-on robotic transesophageal ultrasound system [Figure 1(a)] to operate a
commercial TEE probe (X7-2t, Philips Healthcare, The
Netherlands), allowing operators to precisely adjust the
probe's position remotely. The slave system (the robot) is
driven wirelessly via Bluetooth communication and has
several mechanisms for holding and manipulating the original probe. Our previous work [5] on evaluating the precision of the robotic system in free space demonstrated a
high repeatability of the probe positioning with a mean
error of 0.6 mm and 0.3° for the translation axis, 1.3 mm
and 0.9° for axial rotation, and 0.6 mm and 0.8° for bidirectional bending. Since each individual degree of freedom
was driven by a different motor, multiple axes of the robot
could be driven simultaneously in any combination. We
have since developed a dummy probe that serves as the
master control device for intuitive remote operation of the
robot [Figure 1(b)]. This dummy probe has a similar shape
to the original TEE probe handle and has built-in sensors
to interpret users' inputs. A pair of buttons on the dummy
probe is used for driving the linear belt mechanism of the
robot for translating the original probe. A rotating handle,
which can rotate about the long axis of the dummy probe,
is used for driving the gear train mechanism of the robot
for rotation of the original probe. A dual-shaft driving knob
pair is used for rotating similar knobs on the original probe
handle, via the belt mechanism, for bidirectional bending
of the probe head.
DECEMBER 2016
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
119
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - December 2016
IEEE Robotics & Automation Magazine - December 2016 - Cover1
IEEE Robotics & Automation Magazine - December 2016 - Cover2
IEEE Robotics & Automation Magazine - December 2016 - 1
IEEE Robotics & Automation Magazine - December 2016 - 2
IEEE Robotics & Automation Magazine - December 2016 - 3
IEEE Robotics & Automation Magazine - December 2016 - 4
IEEE Robotics & Automation Magazine - December 2016 - 5
IEEE Robotics & Automation Magazine - December 2016 - 6
IEEE Robotics & Automation Magazine - December 2016 - 7
IEEE Robotics & Automation Magazine - December 2016 - 8
IEEE Robotics & Automation Magazine - December 2016 - 9
IEEE Robotics & Automation Magazine - December 2016 - 10
IEEE Robotics & Automation Magazine - December 2016 - 11
IEEE Robotics & Automation Magazine - December 2016 - 12
IEEE Robotics & Automation Magazine - December 2016 - 13
IEEE Robotics & Automation Magazine - December 2016 - 14
IEEE Robotics & Automation Magazine - December 2016 - 15
IEEE Robotics & Automation Magazine - December 2016 - 16
IEEE Robotics & Automation Magazine - December 2016 - 17
IEEE Robotics & Automation Magazine - December 2016 - 18
IEEE Robotics & Automation Magazine - December 2016 - 19
IEEE Robotics & Automation Magazine - December 2016 - 20
IEEE Robotics & Automation Magazine - December 2016 - 21
IEEE Robotics & Automation Magazine - December 2016 - 22
IEEE Robotics & Automation Magazine - December 2016 - 23
IEEE Robotics & Automation Magazine - December 2016 - 24
IEEE Robotics & Automation Magazine - December 2016 - 25
IEEE Robotics & Automation Magazine - December 2016 - 26
IEEE Robotics & Automation Magazine - December 2016 - 27
IEEE Robotics & Automation Magazine - December 2016 - 28
IEEE Robotics & Automation Magazine - December 2016 - 29
IEEE Robotics & Automation Magazine - December 2016 - 30
IEEE Robotics & Automation Magazine - December 2016 - 31
IEEE Robotics & Automation Magazine - December 2016 - 32
IEEE Robotics & Automation Magazine - December 2016 - 33
IEEE Robotics & Automation Magazine - December 2016 - 34
IEEE Robotics & Automation Magazine - December 2016 - 35
IEEE Robotics & Automation Magazine - December 2016 - 36
IEEE Robotics & Automation Magazine - December 2016 - 37
IEEE Robotics & Automation Magazine - December 2016 - 38
IEEE Robotics & Automation Magazine - December 2016 - 39
IEEE Robotics & Automation Magazine - December 2016 - 40
IEEE Robotics & Automation Magazine - December 2016 - 41
IEEE Robotics & Automation Magazine - December 2016 - 42
IEEE Robotics & Automation Magazine - December 2016 - 43
IEEE Robotics & Automation Magazine - December 2016 - 44
IEEE Robotics & Automation Magazine - December 2016 - 45
IEEE Robotics & Automation Magazine - December 2016 - 46
IEEE Robotics & Automation Magazine - December 2016 - 47
IEEE Robotics & Automation Magazine - December 2016 - 48
IEEE Robotics & Automation Magazine - December 2016 - 49
IEEE Robotics & Automation Magazine - December 2016 - 50
IEEE Robotics & Automation Magazine - December 2016 - 51
IEEE Robotics & Automation Magazine - December 2016 - 52
IEEE Robotics & Automation Magazine - December 2016 - 53
IEEE Robotics & Automation Magazine - December 2016 - 54
IEEE Robotics & Automation Magazine - December 2016 - 55
IEEE Robotics & Automation Magazine - December 2016 - 56
IEEE Robotics & Automation Magazine - December 2016 - 57
IEEE Robotics & Automation Magazine - December 2016 - 58
IEEE Robotics & Automation Magazine - December 2016 - 59
IEEE Robotics & Automation Magazine - December 2016 - 60
IEEE Robotics & Automation Magazine - December 2016 - 61
IEEE Robotics & Automation Magazine - December 2016 - 62
IEEE Robotics & Automation Magazine - December 2016 - 63
IEEE Robotics & Automation Magazine - December 2016 - 64
IEEE Robotics & Automation Magazine - December 2016 - 65
IEEE Robotics & Automation Magazine - December 2016 - 66
IEEE Robotics & Automation Magazine - December 2016 - 67
IEEE Robotics & Automation Magazine - December 2016 - 68
IEEE Robotics & Automation Magazine - December 2016 - 69
IEEE Robotics & Automation Magazine - December 2016 - 70
IEEE Robotics & Automation Magazine - December 2016 - 71
IEEE Robotics & Automation Magazine - December 2016 - 72
IEEE Robotics & Automation Magazine - December 2016 - 73
IEEE Robotics & Automation Magazine - December 2016 - 74
IEEE Robotics & Automation Magazine - December 2016 - 75
IEEE Robotics & Automation Magazine - December 2016 - 76
IEEE Robotics & Automation Magazine - December 2016 - 77
IEEE Robotics & Automation Magazine - December 2016 - 78
IEEE Robotics & Automation Magazine - December 2016 - 79
IEEE Robotics & Automation Magazine - December 2016 - 80
IEEE Robotics & Automation Magazine - December 2016 - 81
IEEE Robotics & Automation Magazine - December 2016 - 82
IEEE Robotics & Automation Magazine - December 2016 - 83
IEEE Robotics & Automation Magazine - December 2016 - 84
IEEE Robotics & Automation Magazine - December 2016 - 85
IEEE Robotics & Automation Magazine - December 2016 - 86
IEEE Robotics & Automation Magazine - December 2016 - 87
IEEE Robotics & Automation Magazine - December 2016 - 88
IEEE Robotics & Automation Magazine - December 2016 - 89
IEEE Robotics & Automation Magazine - December 2016 - 90
IEEE Robotics & Automation Magazine - December 2016 - 91
IEEE Robotics & Automation Magazine - December 2016 - 92
IEEE Robotics & Automation Magazine - December 2016 - 93
IEEE Robotics & Automation Magazine - December 2016 - 94
IEEE Robotics & Automation Magazine - December 2016 - 95
IEEE Robotics & Automation Magazine - December 2016 - 96
IEEE Robotics & Automation Magazine - December 2016 - 97
IEEE Robotics & Automation Magazine - December 2016 - 98
IEEE Robotics & Automation Magazine - December 2016 - 99
IEEE Robotics & Automation Magazine - December 2016 - 100
IEEE Robotics & Automation Magazine - December 2016 - 101
IEEE Robotics & Automation Magazine - December 2016 - 102
IEEE Robotics & Automation Magazine - December 2016 - 103
IEEE Robotics & Automation Magazine - December 2016 - 104
IEEE Robotics & Automation Magazine - December 2016 - 105
IEEE Robotics & Automation Magazine - December 2016 - 106
IEEE Robotics & Automation Magazine - December 2016 - 107
IEEE Robotics & Automation Magazine - December 2016 - 108
IEEE Robotics & Automation Magazine - December 2016 - 109
IEEE Robotics & Automation Magazine - December 2016 - 110
IEEE Robotics & Automation Magazine - December 2016 - 111
IEEE Robotics & Automation Magazine - December 2016 - 112
IEEE Robotics & Automation Magazine - December 2016 - 113
IEEE Robotics & Automation Magazine - December 2016 - 114
IEEE Robotics & Automation Magazine - December 2016 - 115
IEEE Robotics & Automation Magazine - December 2016 - 116
IEEE Robotics & Automation Magazine - December 2016 - 117
IEEE Robotics & Automation Magazine - December 2016 - 118
IEEE Robotics & Automation Magazine - December 2016 - 119
IEEE Robotics & Automation Magazine - December 2016 - 120
IEEE Robotics & Automation Magazine - December 2016 - 121
IEEE Robotics & Automation Magazine - December 2016 - 122
IEEE Robotics & Automation Magazine - December 2016 - 123
IEEE Robotics & Automation Magazine - December 2016 - 124
IEEE Robotics & Automation Magazine - December 2016 - 125
IEEE Robotics & Automation Magazine - December 2016 - 126
IEEE Robotics & Automation Magazine - December 2016 - 127
IEEE Robotics & Automation Magazine - December 2016 - 128
IEEE Robotics & Automation Magazine - December 2016 - 129
IEEE Robotics & Automation Magazine - December 2016 - 130
IEEE Robotics & Automation Magazine - December 2016 - 131
IEEE Robotics & Automation Magazine - December 2016 - 132
IEEE Robotics & Automation Magazine - December 2016 - 133
IEEE Robotics & Automation Magazine - December 2016 - 134
IEEE Robotics & Automation Magazine - December 2016 - 135
IEEE Robotics & Automation Magazine - December 2016 - 136
IEEE Robotics & Automation Magazine - December 2016 - 137
IEEE Robotics & Automation Magazine - December 2016 - 138
IEEE Robotics & Automation Magazine - December 2016 - 139
IEEE Robotics & Automation Magazine - December 2016 - 140
IEEE Robotics & Automation Magazine - December 2016 - 141
IEEE Robotics & Automation Magazine - December 2016 - 142
IEEE Robotics & Automation Magazine - December 2016 - 143
IEEE Robotics & Automation Magazine - December 2016 - 144
IEEE Robotics & Automation Magazine - December 2016 - 145
IEEE Robotics & Automation Magazine - December 2016 - 146
IEEE Robotics & Automation Magazine - December 2016 - 147
IEEE Robotics & Automation Magazine - December 2016 - 148
IEEE Robotics & Automation Magazine - December 2016 - 149
IEEE Robotics & Automation Magazine - December 2016 - 150
IEEE Robotics & Automation Magazine - December 2016 - 151
IEEE Robotics & Automation Magazine - December 2016 - 152
IEEE Robotics & Automation Magazine - December 2016 - 153
IEEE Robotics & Automation Magazine - December 2016 - 154
IEEE Robotics & Automation Magazine - December 2016 - 155
IEEE Robotics & Automation Magazine - December 2016 - 156
IEEE Robotics & Automation Magazine - December 2016 - 157
IEEE Robotics & Automation Magazine - December 2016 - 158
IEEE Robotics & Automation Magazine - December 2016 - 159
IEEE Robotics & Automation Magazine - December 2016 - 160
IEEE Robotics & Automation Magazine - December 2016 - 161
IEEE Robotics & Automation Magazine - December 2016 - 162
IEEE Robotics & Automation Magazine - December 2016 - 163
IEEE Robotics & Automation Magazine - December 2016 - 164
IEEE Robotics & Automation Magazine - December 2016 - 165
IEEE Robotics & Automation Magazine - December 2016 - 166
IEEE Robotics & Automation Magazine - December 2016 - 167
IEEE Robotics & Automation Magazine - December 2016 - 168
IEEE Robotics & Automation Magazine - December 2016 - 169
IEEE Robotics & Automation Magazine - December 2016 - 170
IEEE Robotics & Automation Magazine - December 2016 - 171
IEEE Robotics & Automation Magazine - December 2016 - 172
IEEE Robotics & Automation Magazine - December 2016 - 173
IEEE Robotics & Automation Magazine - December 2016 - 174
IEEE Robotics & Automation Magazine - December 2016 - 175
IEEE Robotics & Automation Magazine - December 2016 - 176
IEEE Robotics & Automation Magazine - December 2016 - 177
IEEE Robotics & Automation Magazine - December 2016 - 178
IEEE Robotics & Automation Magazine - December 2016 - 179
IEEE Robotics & Automation Magazine - December 2016 - 180
IEEE Robotics & Automation Magazine - December 2016 - 181
IEEE Robotics & Automation Magazine - December 2016 - 182
IEEE Robotics & Automation Magazine - December 2016 - 183
IEEE Robotics & Automation Magazine - December 2016 - 184
IEEE Robotics & Automation Magazine - December 2016 - 185
IEEE Robotics & Automation Magazine - December 2016 - 186
IEEE Robotics & Automation Magazine - December 2016 - 187
IEEE Robotics & Automation Magazine - December 2016 - 188
IEEE Robotics & Automation Magazine - December 2016 - 189
IEEE Robotics & Automation Magazine - December 2016 - 190
IEEE Robotics & Automation Magazine - December 2016 - 191
IEEE Robotics & Automation Magazine - December 2016 - 192
IEEE Robotics & Automation Magazine - December 2016 - 193
IEEE Robotics & Automation Magazine - December 2016 - 194
IEEE Robotics & Automation Magazine - December 2016 - 195
IEEE Robotics & Automation Magazine - December 2016 - 196
IEEE Robotics & Automation Magazine - December 2016 - 197
IEEE Robotics & Automation Magazine - December 2016 - 198
IEEE Robotics & Automation Magazine - December 2016 - 199
IEEE Robotics & Automation Magazine - December 2016 - 200
IEEE Robotics & Automation Magazine - December 2016 - 201
IEEE Robotics & Automation Magazine - December 2016 - 202
IEEE Robotics & Automation Magazine - December 2016 - 203
IEEE Robotics & Automation Magazine - December 2016 - 204
IEEE Robotics & Automation Magazine - December 2016 - Cover3
IEEE Robotics & Automation Magazine - December 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com