IEEE Robotics & Automation Magazine - June 2012 - 35
this league and detail our approaches to the competition.
Our team achieved first place in the 2011 competition.
While we successfully participated in many standard tests,
we also demonstrated some of the novel capabilities of the
league, such as real-time tabletop segmentation, flexible
grasp planning, and real-time tracking of objects. We also
describe our approach to human-robot cooperative
manipulation using compliant control.
The RoboCup@Home League
The RoboCup@Home league [6], [7] was established in
2006 to foster the development and benchmarking of dexterous and versatile service robots that can operate safely
in everyday scenarios. The robots have to exhibit a wide
variety of skills: object recognition and grasping, safe
indoor navigation, and HRI. In 2011, 19 international
teams competed in the RoboCup@Home league. It is currently one of the strongest growing leagues in RoboCup.
Competition Design
The competition is organized into two preliminary rounds
or stages and a final stage [8]. The preliminary stages consist
of predefined test procedures as well as open demonstrations. The predefined tests include skills for domestic service
robots that must be solved with state-of-the-art approaches.
The time to complete the tests is limited, which forces the
teams to implement time-efficient approaches. During the
tests, the robots must operate autonomously. Helping with
physical interaction or remote control is not allowed. The
rules also include extra scores for specific skills that require
solutions to research questions and rewarding scientific solutions that go beyond the fulfillment of the basic requirements of a test. In open demonstrations, the teams can
choose their own task for the robot to demonstrate the
results of their own research.
After the first stage, the top 50% of the teams (with respect
to score) advanced to the second stage, where they have to
perform more complex tasks. The top 50% of the teams (with
respect to score) after the second stage (including the points
scored in the first stage) further advanced to the final stage,
which is conducted as an open demonstration.
While the rules and the tests are announced several
months before the competition, the details of the competition environment are not known to the participants in
advance. During the first two days of the competition, the
teams can map the competition arena, which resembles an
apartment, and train object recognition on a set of about 20
smaller objects that are used as known objects with names
throughout the recognition and manipulation tests. The
arena is subject to minor and major changes during the
competition and also contains previously unknown objects.
Performance Evaluation
In the predefined tests, each subtask is assigned a certain
number of points, which are awarded upon successful
completion. This allows an objective evaluation of the
overall system performance as well as the assessment of
individual components.
The performances of the teams in the open demonstrations vary greatly and are hence harder to compare. Open
demonstrations are evaluated by juries for their technical
and scientific merits. To provide a fair assessment, these
juries are formed from leaders of other teams or from
members of the technical and executive committees of the
league. The jury in the final is formed from members of the
league's executive committee and distinguished external
representatives of science, industry, and the media.
The juries evaluate the teams by specific criteria that are
defined in the rules of the competition. In the final stage,
for example, the external jury assesses originality and
presentation, usability of HRI, difficulty and success, and
relevance for daily life.
Tests and Skills
The tests in the RoboCup@Home league are designed to
reflect (and test for) the large diversity of problems
addressed in service robotics research.
Tests in Stage I
All teams participate in the first stage, which tests basic
mobile manipulation and HRI capabilities. In the Robot
Inspection and Poster Session test, the robots have to navigate
to a registration desk, introduce themselves, and get inspected
by the league's technical committee. Meanwhile, the team
gives a poster presentation that is evaluated by the leaders of
the other teams. In Follow Me, the robots must demonstrate
person tracking and recognition capabilities in an unknown
environment. The robot is guided by a previously unknown
user who can command the robot either by speech or gestures. At several checkpoints, the robustness of the approaches is tested by applying different disturbances. Mobile
manipulation and HRI capabilities have to be integrated for
GoGetIt. Here, the robot has to retrieve the correct object
among others from a room. The room is specified to the
robot by a human user using speech input. Person detection
and recognition in the home environment is tested within
WhoIsWho. The robot has to learn the identity of two persons
and must later find the persons among others in a different
room. In the General Purpose Service Robot I test, the robots
must understand and act according to complex speech commands that consist of three subtasks, such as moving to a
location, retrieving a specific object, and bringing it back to
the user. The last test in this stage is the Open Challenge in
which the teams can demonstrate their system in a 5-min slot.
Tests in Stage II
The teams that advance to the second stage are tested in
more complex scenarios. Enhanced WhoIsWho extends
WhoIsWho toward a robotic butler scenario. A user tells
the robot to bring beverages to three out of five persons.
The robot has to fetch the beverages and deliver them to
the correct person. Again, the robot is introduced to the
JUNE 2012
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
35
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2012
IEEE Robotics & Automation Magazine - June 2012 - Cover1
IEEE Robotics & Automation Magazine - June 2012 - Cover2
IEEE Robotics & Automation Magazine - June 2012 - 1
IEEE Robotics & Automation Magazine - June 2012 - 2
IEEE Robotics & Automation Magazine - June 2012 - 3
IEEE Robotics & Automation Magazine - June 2012 - 4
IEEE Robotics & Automation Magazine - June 2012 - 5
IEEE Robotics & Automation Magazine - June 2012 - 6
IEEE Robotics & Automation Magazine - June 2012 - 7
IEEE Robotics & Automation Magazine - June 2012 - 8
IEEE Robotics & Automation Magazine - June 2012 - 9
IEEE Robotics & Automation Magazine - June 2012 - 10
IEEE Robotics & Automation Magazine - June 2012 - 11
IEEE Robotics & Automation Magazine - June 2012 - 12
IEEE Robotics & Automation Magazine - June 2012 - 13
IEEE Robotics & Automation Magazine - June 2012 - 14
IEEE Robotics & Automation Magazine - June 2012 - 15
IEEE Robotics & Automation Magazine - June 2012 - 16
IEEE Robotics & Automation Magazine - June 2012 - 17
IEEE Robotics & Automation Magazine - June 2012 - 18
IEEE Robotics & Automation Magazine - June 2012 - 19
IEEE Robotics & Automation Magazine - June 2012 - 20
IEEE Robotics & Automation Magazine - June 2012 - 21
IEEE Robotics & Automation Magazine - June 2012 - 22
IEEE Robotics & Automation Magazine - June 2012 - 23
IEEE Robotics & Automation Magazine - June 2012 - 24
IEEE Robotics & Automation Magazine - June 2012 - 25
IEEE Robotics & Automation Magazine - June 2012 - 26
IEEE Robotics & Automation Magazine - June 2012 - 27
IEEE Robotics & Automation Magazine - June 2012 - 28
IEEE Robotics & Automation Magazine - June 2012 - 29
IEEE Robotics & Automation Magazine - June 2012 - 30
IEEE Robotics & Automation Magazine - June 2012 - 31
IEEE Robotics & Automation Magazine - June 2012 - 32
IEEE Robotics & Automation Magazine - June 2012 - 33
IEEE Robotics & Automation Magazine - June 2012 - 34
IEEE Robotics & Automation Magazine - June 2012 - 35
IEEE Robotics & Automation Magazine - June 2012 - 36
IEEE Robotics & Automation Magazine - June 2012 - 37
IEEE Robotics & Automation Magazine - June 2012 - 38
IEEE Robotics & Automation Magazine - June 2012 - 39
IEEE Robotics & Automation Magazine - June 2012 - 40
IEEE Robotics & Automation Magazine - June 2012 - 41
IEEE Robotics & Automation Magazine - June 2012 - 42
IEEE Robotics & Automation Magazine - June 2012 - 43
IEEE Robotics & Automation Magazine - June 2012 - 44
IEEE Robotics & Automation Magazine - June 2012 - 45
IEEE Robotics & Automation Magazine - June 2012 - 46
IEEE Robotics & Automation Magazine - June 2012 - 47
IEEE Robotics & Automation Magazine - June 2012 - 48
IEEE Robotics & Automation Magazine - June 2012 - 49
IEEE Robotics & Automation Magazine - June 2012 - 50
IEEE Robotics & Automation Magazine - June 2012 - 51
IEEE Robotics & Automation Magazine - June 2012 - 52
IEEE Robotics & Automation Magazine - June 2012 - 53
IEEE Robotics & Automation Magazine - June 2012 - 54
IEEE Robotics & Automation Magazine - June 2012 - 55
IEEE Robotics & Automation Magazine - June 2012 - 56
IEEE Robotics & Automation Magazine - June 2012 - 57
IEEE Robotics & Automation Magazine - June 2012 - 58
IEEE Robotics & Automation Magazine - June 2012 - 59
IEEE Robotics & Automation Magazine - June 2012 - 60
IEEE Robotics & Automation Magazine - June 2012 - 61
IEEE Robotics & Automation Magazine - June 2012 - 62
IEEE Robotics & Automation Magazine - June 2012 - 63
IEEE Robotics & Automation Magazine - June 2012 - 64
IEEE Robotics & Automation Magazine - June 2012 - 65
IEEE Robotics & Automation Magazine - June 2012 - 66
IEEE Robotics & Automation Magazine - June 2012 - 67
IEEE Robotics & Automation Magazine - June 2012 - 68
IEEE Robotics & Automation Magazine - June 2012 - 69
IEEE Robotics & Automation Magazine - June 2012 - 70
IEEE Robotics & Automation Magazine - June 2012 - 71
IEEE Robotics & Automation Magazine - June 2012 - 72
IEEE Robotics & Automation Magazine - June 2012 - 73
IEEE Robotics & Automation Magazine - June 2012 - 74
IEEE Robotics & Automation Magazine - June 2012 - 75
IEEE Robotics & Automation Magazine - June 2012 - 76
IEEE Robotics & Automation Magazine - June 2012 - 77
IEEE Robotics & Automation Magazine - June 2012 - 78
IEEE Robotics & Automation Magazine - June 2012 - 79
IEEE Robotics & Automation Magazine - June 2012 - 80
IEEE Robotics & Automation Magazine - June 2012 - 81
IEEE Robotics & Automation Magazine - June 2012 - 82
IEEE Robotics & Automation Magazine - June 2012 - 83
IEEE Robotics & Automation Magazine - June 2012 - 84
IEEE Robotics & Automation Magazine - June 2012 - 85
IEEE Robotics & Automation Magazine - June 2012 - 86
IEEE Robotics & Automation Magazine - June 2012 - 87
IEEE Robotics & Automation Magazine - June 2012 - 88
IEEE Robotics & Automation Magazine - June 2012 - 89
IEEE Robotics & Automation Magazine - June 2012 - 90
IEEE Robotics & Automation Magazine - June 2012 - 91
IEEE Robotics & Automation Magazine - June 2012 - 92
IEEE Robotics & Automation Magazine - June 2012 - 93
IEEE Robotics & Automation Magazine - June 2012 - 94
IEEE Robotics & Automation Magazine - June 2012 - 95
IEEE Robotics & Automation Magazine - June 2012 - 96
IEEE Robotics & Automation Magazine - June 2012 - 97
IEEE Robotics & Automation Magazine - June 2012 - 98
IEEE Robotics & Automation Magazine - June 2012 - 99
IEEE Robotics & Automation Magazine - June 2012 - 100
IEEE Robotics & Automation Magazine - June 2012 - 101
IEEE Robotics & Automation Magazine - June 2012 - 102
IEEE Robotics & Automation Magazine - June 2012 - 103
IEEE Robotics & Automation Magazine - June 2012 - 104
IEEE Robotics & Automation Magazine - June 2012 - 105
IEEE Robotics & Automation Magazine - June 2012 - 106
IEEE Robotics & Automation Magazine - June 2012 - 107
IEEE Robotics & Automation Magazine - June 2012 - 108
IEEE Robotics & Automation Magazine - June 2012 - 109
IEEE Robotics & Automation Magazine - June 2012 - 110
IEEE Robotics & Automation Magazine - June 2012 - 111
IEEE Robotics & Automation Magazine - June 2012 - 112
IEEE Robotics & Automation Magazine - June 2012 - Cover3
IEEE Robotics & Automation Magazine - June 2012 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com