IEEE Robotics & Automation Magazine - June 2013 - 37

Preassessment

responses are generally discovery oriented, such as invent
things, design new things, discover things and modeling,
and build models of things they are going to do. These
responses, in particular, may be the result of students internalizing the basic scientific method by simultaneous exposure to many aspects of the design process during the event
at the NYAQ.
Figure 10 shows
Robotics-based activities
stacked bar graphs representing the distribution
administered to students
of students' agreement or
disagreement with stateoutside of school
ments S1-S7 on the preassessment and S1-S10
environments, in the form
on the postassessment.
As stated above, stateof workshops and summer
ments without response
or with multiple responscamps, are shown to
es to the same statement
are excluded from this
positively influence the
analysis. S1 and S2 are
designed to test the perparticipants' understanding
ception of the engineering discipline. S3 asks for
of engineering topics.
demographic information about the students'
personal ties to engineering professionals. S4 is written to test the accessibility of
engineering as a career to the students. S5 and S6 seek to
garner information about the importance of engineering.
S7 explicitly inquires as to the students' desire to pursue
careers in engineering.

Postassessment

well as a comfort question (what is the student's favorite
marine animal), which is designed to put the student at
ease while completing the survey. The relevant questions
for assessing change in the student's perception of STEM
ask for the student's favorite subject in school, what the
student wants to be when he or she grows up, and one
thing that engineers do.
A total of 62 students from a fourth-grade class and a
sixth-grade class were surveyed before visiting the aquarium, and 50 students participated in the fun-science activity.
The ages and socioeconomic backgrounds of students in
both classes, separately participating in the activity over
two days, are parallel as both classes come from local, public schools within a 1-mi distance from each other. In light
of this similarity, their surveys are combined to afford a
larger sample of preassessment and postassessment
responses analyzed in this section.
The responses for their favorite school subject are partitioned into STEM and non-STEM disciplines, with multiple responses considered as STEM if they include at least
one STEM discipline. Blank responses are discarded. The
preassessment shows 71% of surveyed students preferring
STEM fields and 29% preferring non-STEM fields. The
postassessment suggests an increase in STEM preference,
with 80% of students preferring STEM to 20% preferring
non-STEM.
The responses regarding career aspirations, what the
students would like to be when they grow up, are also
partitioned into STEM and non-STEM fields. Multiple
responses are counted as STEM if they include at least one
STEM career. If "doctor" is considered a STEM profession, then a decline from 45% of students considering
STEM careers before the activity to 38% after the activity
is observed. However, excluding doctor responses, the
STEM careers to which the students aspire rise from 21 to
26% of the remaining responses, which hints at an
increased interest in the less visible STEM professions.
Additionally, of the non-STEM careers favored by the participants, approximately 25% chose police officer or
undercover cop consistently in the preassessment and
postassessment, which speaks about the more visible
careers in their socioeconomic environment.
Students' answers to the question "What is one thing
engineers do?" sheds light on the changing perceptions
after the fun-science activity. Perhaps due to confusion over
the difference between a mechanic and a mechanical engineer, 23% of students in the preassessment gave automotive-related responses to this question, such as fix or make
cars. However, the postassessment shows only 13% of students had automotive-related answers. Additionally, the
students' responses are partitioned into three thematic subsets: fabrication (make things), maintenance (fix things),
and other. The preassessment shows 39% fabrication, 49%
maintenance, and 12% other responses. The postassessment shows a shifting distribution, with 46% fabrication,
30% maintenance, and 24% other responses. The other

1
0.5
0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
(a)

1
0.5
0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
(b)
DA

D

A

AA

Figure 10. Stacked bar graphs of student agreement percentages
(a) before and (b) after the activity. AA denotes agree a lot; A
denotes agree; D denotes disagree; and DA denotes disagree a
lot. Additional statements appearing only in the postassessment
are S8: "I learned a lot today," S9: "I would like to have more
engineering presentations like this one in the future," and S10:
"Today's visit made engineering look fun."

june 2013

*

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

37



Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2013

IEEE Robotics & Automation Magazine - June 2013 - Cover1
IEEE Robotics & Automation Magazine - June 2013 - Cover2
IEEE Robotics & Automation Magazine - June 2013 - 1
IEEE Robotics & Automation Magazine - June 2013 - 2
IEEE Robotics & Automation Magazine - June 2013 - 3
IEEE Robotics & Automation Magazine - June 2013 - 4
IEEE Robotics & Automation Magazine - June 2013 - 5
IEEE Robotics & Automation Magazine - June 2013 - 6
IEEE Robotics & Automation Magazine - June 2013 - 7
IEEE Robotics & Automation Magazine - June 2013 - 8
IEEE Robotics & Automation Magazine - June 2013 - 9
IEEE Robotics & Automation Magazine - June 2013 - 10
IEEE Robotics & Automation Magazine - June 2013 - 11
IEEE Robotics & Automation Magazine - June 2013 - 12
IEEE Robotics & Automation Magazine - June 2013 - 13
IEEE Robotics & Automation Magazine - June 2013 - 14
IEEE Robotics & Automation Magazine - June 2013 - 15
IEEE Robotics & Automation Magazine - June 2013 - 16
IEEE Robotics & Automation Magazine - June 2013 - 17
IEEE Robotics & Automation Magazine - June 2013 - 18
IEEE Robotics & Automation Magazine - June 2013 - 19
IEEE Robotics & Automation Magazine - June 2013 - 20
IEEE Robotics & Automation Magazine - June 2013 - 21
IEEE Robotics & Automation Magazine - June 2013 - 22
IEEE Robotics & Automation Magazine - June 2013 - 23
IEEE Robotics & Automation Magazine - June 2013 - 24
IEEE Robotics & Automation Magazine - June 2013 - 25
IEEE Robotics & Automation Magazine - June 2013 - 26
IEEE Robotics & Automation Magazine - June 2013 - 27
IEEE Robotics & Automation Magazine - June 2013 - 28
IEEE Robotics & Automation Magazine - June 2013 - 29
IEEE Robotics & Automation Magazine - June 2013 - 30
IEEE Robotics & Automation Magazine - June 2013 - 31
IEEE Robotics & Automation Magazine - June 2013 - 32
IEEE Robotics & Automation Magazine - June 2013 - 33
IEEE Robotics & Automation Magazine - June 2013 - 34
IEEE Robotics & Automation Magazine - June 2013 - 35
IEEE Robotics & Automation Magazine - June 2013 - 36
IEEE Robotics & Automation Magazine - June 2013 - 37
IEEE Robotics & Automation Magazine - June 2013 - 38
IEEE Robotics & Automation Magazine - June 2013 - 39
IEEE Robotics & Automation Magazine - June 2013 - 40
IEEE Robotics & Automation Magazine - June 2013 - 41
IEEE Robotics & Automation Magazine - June 2013 - 42
IEEE Robotics & Automation Magazine - June 2013 - 43
IEEE Robotics & Automation Magazine - June 2013 - 44
IEEE Robotics & Automation Magazine - June 2013 - 45
IEEE Robotics & Automation Magazine - June 2013 - 46
IEEE Robotics & Automation Magazine - June 2013 - 47
IEEE Robotics & Automation Magazine - June 2013 - 48
IEEE Robotics & Automation Magazine - June 2013 - 49
IEEE Robotics & Automation Magazine - June 2013 - 50
IEEE Robotics & Automation Magazine - June 2013 - 51
IEEE Robotics & Automation Magazine - June 2013 - 52
IEEE Robotics & Automation Magazine - June 2013 - 53
IEEE Robotics & Automation Magazine - June 2013 - 54
IEEE Robotics & Automation Magazine - June 2013 - 55
IEEE Robotics & Automation Magazine - June 2013 - 56
IEEE Robotics & Automation Magazine - June 2013 - 57
IEEE Robotics & Automation Magazine - June 2013 - 58
IEEE Robotics & Automation Magazine - June 2013 - 59
IEEE Robotics & Automation Magazine - June 2013 - 60
IEEE Robotics & Automation Magazine - June 2013 - 61
IEEE Robotics & Automation Magazine - June 2013 - 62
IEEE Robotics & Automation Magazine - June 2013 - 63
IEEE Robotics & Automation Magazine - June 2013 - 64
IEEE Robotics & Automation Magazine - June 2013 - 65
IEEE Robotics & Automation Magazine - June 2013 - 66
IEEE Robotics & Automation Magazine - June 2013 - 67
IEEE Robotics & Automation Magazine - June 2013 - 68
IEEE Robotics & Automation Magazine - June 2013 - 69
IEEE Robotics & Automation Magazine - June 2013 - 70
IEEE Robotics & Automation Magazine - June 2013 - 71
IEEE Robotics & Automation Magazine - June 2013 - 72
IEEE Robotics & Automation Magazine - June 2013 - 73
IEEE Robotics & Automation Magazine - June 2013 - 74
IEEE Robotics & Automation Magazine - June 2013 - 75
IEEE Robotics & Automation Magazine - June 2013 - 76
IEEE Robotics & Automation Magazine - June 2013 - 77
IEEE Robotics & Automation Magazine - June 2013 - 78
IEEE Robotics & Automation Magazine - June 2013 - 79
IEEE Robotics & Automation Magazine - June 2013 - 80
IEEE Robotics & Automation Magazine - June 2013 - 81
IEEE Robotics & Automation Magazine - June 2013 - 82
IEEE Robotics & Automation Magazine - June 2013 - 83
IEEE Robotics & Automation Magazine - June 2013 - 84
IEEE Robotics & Automation Magazine - June 2013 - 85
IEEE Robotics & Automation Magazine - June 2013 - 86
IEEE Robotics & Automation Magazine - June 2013 - 87
IEEE Robotics & Automation Magazine - June 2013 - 88
IEEE Robotics & Automation Magazine - June 2013 - 89
IEEE Robotics & Automation Magazine - June 2013 - 90
IEEE Robotics & Automation Magazine - June 2013 - 91
IEEE Robotics & Automation Magazine - June 2013 - 92
IEEE Robotics & Automation Magazine - June 2013 - 93
IEEE Robotics & Automation Magazine - June 2013 - 94
IEEE Robotics & Automation Magazine - June 2013 - 95
IEEE Robotics & Automation Magazine - June 2013 - 96
IEEE Robotics & Automation Magazine - June 2013 - 97
IEEE Robotics & Automation Magazine - June 2013 - 98
IEEE Robotics & Automation Magazine - June 2013 - 99
IEEE Robotics & Automation Magazine - June 2013 - 100
IEEE Robotics & Automation Magazine - June 2013 - 101
IEEE Robotics & Automation Magazine - June 2013 - 102
IEEE Robotics & Automation Magazine - June 2013 - 103
IEEE Robotics & Automation Magazine - June 2013 - 104
IEEE Robotics & Automation Magazine - June 2013 - 105
IEEE Robotics & Automation Magazine - June 2013 - 106
IEEE Robotics & Automation Magazine - June 2013 - 107
IEEE Robotics & Automation Magazine - June 2013 - 108
IEEE Robotics & Automation Magazine - June 2013 - 109
IEEE Robotics & Automation Magazine - June 2013 - 110
IEEE Robotics & Automation Magazine - June 2013 - 111
IEEE Robotics & Automation Magazine - June 2013 - 112
IEEE Robotics & Automation Magazine - June 2013 - 113
IEEE Robotics & Automation Magazine - June 2013 - 114
IEEE Robotics & Automation Magazine - June 2013 - 115
IEEE Robotics & Automation Magazine - June 2013 - 116
IEEE Robotics & Automation Magazine - June 2013 - 117
IEEE Robotics & Automation Magazine - June 2013 - 118
IEEE Robotics & Automation Magazine - June 2013 - 119
IEEE Robotics & Automation Magazine - June 2013 - 120
IEEE Robotics & Automation Magazine - June 2013 - 121
IEEE Robotics & Automation Magazine - June 2013 - 122
IEEE Robotics & Automation Magazine - June 2013 - 123
IEEE Robotics & Automation Magazine - June 2013 - 124
IEEE Robotics & Automation Magazine - June 2013 - 125
IEEE Robotics & Automation Magazine - June 2013 - 126
IEEE Robotics & Automation Magazine - June 2013 - 127
IEEE Robotics & Automation Magazine - June 2013 - 128
IEEE Robotics & Automation Magazine - June 2013 - Cover3
IEEE Robotics & Automation Magazine - June 2013 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com