IEEE Robotics & Automation Magazine - June 2013 - 58

INT

Main Thread
PIC Comm
SV

Motion
Control
Low Level Data
Processing

SV

Comm
Thread
ZigBee
ZigBee

INT

Generic
Thread

...
...
...

scanner and builds maps related to
parts of real domestic environments.
Finally, a gas mapping task is presented: in this situation, SAETTA is
equipped with a large variety of sensors. Related to this experiment, a
description of the software architecture together with some technical
details is provided.

Consensus Algorithm
In this scenario, three robots were
used. Each agent, having a prior
Motion
ZigBee
knowledge of its own state with
Control
respect to a common frame, repeat...
Low Level Data
edly broadcasted its position to the
...
Processing
others. Applying the consensus fil...
ter, the agents would meet to the
t
mean of the initial positions if the
dynamics of the robots were linear.
Because of nonholonomic conFigure 9. High-level program structure: on the left, a vertical time line is depicted. The
first block, the main thread, is constituted by the periodic execution of subtasks as the
straints, the input generated by this
communication with the PIC (PIC Comm block), motion control, and low-level data processing.
control law was then filtered by
The period of this thread is given by the interrupt (INT), which rises every 200 ms. Other parallel
a Cartesian controller [14]. As
periodic threads can run at the same time: their execution can be shorter than the control cycle
(e.g., Comm Thread) or longer (Generic Thread) than that. The communication between threads
depicted in Figure 10, this controller
is performed by shared variable, SV.
overcomes the drawback: the trajectories of the robots converge to a
common point, which obviously is
not the mean of the initial states. In this test, each robot
140
traveled on an average for 78.8 cm: the maximum linear
120
speed was 7.54 cm/s while the rotational one was 0.98 rad/s.
100
Each robot broadcasted its state with a frequency of 10 Hz
(double with respect to the control cycle to prevent
80
data losses): on an average, each robot sent 174 packets. In
60
Table 2, it can be seen that the number of lost packets are
40
negligible as well as the computational load: the algorithm
20
takes about 3 ms per iteration, and this time can be further0
more reduced avoiding the use of trigonometric functions
−20
by lookup tables and an integer implementation. Also, the
−20 0
20 40 60 80 100 120 140
cm
odometry has proven to be very precise. Robots arrived to a
(a)
common point without having feedback about their positions by external sensors, e.g., cameras. As mentioned previously, several tests revealed errors smaller than 1% over long
straight paths (about 12 m) as well as small angular displacements over self-rotations.
PIC Comm

cm

ZigBee

Table 2. Consensus experiment data.
(b)

Figure 10. (a) Robot trajectories during consensus test: black
triangles represent initial configurations. Axes units are expressed
in centimeters. (b) Stroboscopic view of the experiment. (Photo
courtesy of DIA, Rome.)

58

*

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

june 2013

Robot 1

Robot 2

Robot 3

74.4527

79.4467

82.6943

Maximum speed (cm/s) 7.54

7.36

7.25

mean speed (cm/s)

3.15

3.85

3.99

Maximum data loss
respect to one target

1%

0%

0%

Path (cm)



Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2013

IEEE Robotics & Automation Magazine - June 2013 - Cover1
IEEE Robotics & Automation Magazine - June 2013 - Cover2
IEEE Robotics & Automation Magazine - June 2013 - 1
IEEE Robotics & Automation Magazine - June 2013 - 2
IEEE Robotics & Automation Magazine - June 2013 - 3
IEEE Robotics & Automation Magazine - June 2013 - 4
IEEE Robotics & Automation Magazine - June 2013 - 5
IEEE Robotics & Automation Magazine - June 2013 - 6
IEEE Robotics & Automation Magazine - June 2013 - 7
IEEE Robotics & Automation Magazine - June 2013 - 8
IEEE Robotics & Automation Magazine - June 2013 - 9
IEEE Robotics & Automation Magazine - June 2013 - 10
IEEE Robotics & Automation Magazine - June 2013 - 11
IEEE Robotics & Automation Magazine - June 2013 - 12
IEEE Robotics & Automation Magazine - June 2013 - 13
IEEE Robotics & Automation Magazine - June 2013 - 14
IEEE Robotics & Automation Magazine - June 2013 - 15
IEEE Robotics & Automation Magazine - June 2013 - 16
IEEE Robotics & Automation Magazine - June 2013 - 17
IEEE Robotics & Automation Magazine - June 2013 - 18
IEEE Robotics & Automation Magazine - June 2013 - 19
IEEE Robotics & Automation Magazine - June 2013 - 20
IEEE Robotics & Automation Magazine - June 2013 - 21
IEEE Robotics & Automation Magazine - June 2013 - 22
IEEE Robotics & Automation Magazine - June 2013 - 23
IEEE Robotics & Automation Magazine - June 2013 - 24
IEEE Robotics & Automation Magazine - June 2013 - 25
IEEE Robotics & Automation Magazine - June 2013 - 26
IEEE Robotics & Automation Magazine - June 2013 - 27
IEEE Robotics & Automation Magazine - June 2013 - 28
IEEE Robotics & Automation Magazine - June 2013 - 29
IEEE Robotics & Automation Magazine - June 2013 - 30
IEEE Robotics & Automation Magazine - June 2013 - 31
IEEE Robotics & Automation Magazine - June 2013 - 32
IEEE Robotics & Automation Magazine - June 2013 - 33
IEEE Robotics & Automation Magazine - June 2013 - 34
IEEE Robotics & Automation Magazine - June 2013 - 35
IEEE Robotics & Automation Magazine - June 2013 - 36
IEEE Robotics & Automation Magazine - June 2013 - 37
IEEE Robotics & Automation Magazine - June 2013 - 38
IEEE Robotics & Automation Magazine - June 2013 - 39
IEEE Robotics & Automation Magazine - June 2013 - 40
IEEE Robotics & Automation Magazine - June 2013 - 41
IEEE Robotics & Automation Magazine - June 2013 - 42
IEEE Robotics & Automation Magazine - June 2013 - 43
IEEE Robotics & Automation Magazine - June 2013 - 44
IEEE Robotics & Automation Magazine - June 2013 - 45
IEEE Robotics & Automation Magazine - June 2013 - 46
IEEE Robotics & Automation Magazine - June 2013 - 47
IEEE Robotics & Automation Magazine - June 2013 - 48
IEEE Robotics & Automation Magazine - June 2013 - 49
IEEE Robotics & Automation Magazine - June 2013 - 50
IEEE Robotics & Automation Magazine - June 2013 - 51
IEEE Robotics & Automation Magazine - June 2013 - 52
IEEE Robotics & Automation Magazine - June 2013 - 53
IEEE Robotics & Automation Magazine - June 2013 - 54
IEEE Robotics & Automation Magazine - June 2013 - 55
IEEE Robotics & Automation Magazine - June 2013 - 56
IEEE Robotics & Automation Magazine - June 2013 - 57
IEEE Robotics & Automation Magazine - June 2013 - 58
IEEE Robotics & Automation Magazine - June 2013 - 59
IEEE Robotics & Automation Magazine - June 2013 - 60
IEEE Robotics & Automation Magazine - June 2013 - 61
IEEE Robotics & Automation Magazine - June 2013 - 62
IEEE Robotics & Automation Magazine - June 2013 - 63
IEEE Robotics & Automation Magazine - June 2013 - 64
IEEE Robotics & Automation Magazine - June 2013 - 65
IEEE Robotics & Automation Magazine - June 2013 - 66
IEEE Robotics & Automation Magazine - June 2013 - 67
IEEE Robotics & Automation Magazine - June 2013 - 68
IEEE Robotics & Automation Magazine - June 2013 - 69
IEEE Robotics & Automation Magazine - June 2013 - 70
IEEE Robotics & Automation Magazine - June 2013 - 71
IEEE Robotics & Automation Magazine - June 2013 - 72
IEEE Robotics & Automation Magazine - June 2013 - 73
IEEE Robotics & Automation Magazine - June 2013 - 74
IEEE Robotics & Automation Magazine - June 2013 - 75
IEEE Robotics & Automation Magazine - June 2013 - 76
IEEE Robotics & Automation Magazine - June 2013 - 77
IEEE Robotics & Automation Magazine - June 2013 - 78
IEEE Robotics & Automation Magazine - June 2013 - 79
IEEE Robotics & Automation Magazine - June 2013 - 80
IEEE Robotics & Automation Magazine - June 2013 - 81
IEEE Robotics & Automation Magazine - June 2013 - 82
IEEE Robotics & Automation Magazine - June 2013 - 83
IEEE Robotics & Automation Magazine - June 2013 - 84
IEEE Robotics & Automation Magazine - June 2013 - 85
IEEE Robotics & Automation Magazine - June 2013 - 86
IEEE Robotics & Automation Magazine - June 2013 - 87
IEEE Robotics & Automation Magazine - June 2013 - 88
IEEE Robotics & Automation Magazine - June 2013 - 89
IEEE Robotics & Automation Magazine - June 2013 - 90
IEEE Robotics & Automation Magazine - June 2013 - 91
IEEE Robotics & Automation Magazine - June 2013 - 92
IEEE Robotics & Automation Magazine - June 2013 - 93
IEEE Robotics & Automation Magazine - June 2013 - 94
IEEE Robotics & Automation Magazine - June 2013 - 95
IEEE Robotics & Automation Magazine - June 2013 - 96
IEEE Robotics & Automation Magazine - June 2013 - 97
IEEE Robotics & Automation Magazine - June 2013 - 98
IEEE Robotics & Automation Magazine - June 2013 - 99
IEEE Robotics & Automation Magazine - June 2013 - 100
IEEE Robotics & Automation Magazine - June 2013 - 101
IEEE Robotics & Automation Magazine - June 2013 - 102
IEEE Robotics & Automation Magazine - June 2013 - 103
IEEE Robotics & Automation Magazine - June 2013 - 104
IEEE Robotics & Automation Magazine - June 2013 - 105
IEEE Robotics & Automation Magazine - June 2013 - 106
IEEE Robotics & Automation Magazine - June 2013 - 107
IEEE Robotics & Automation Magazine - June 2013 - 108
IEEE Robotics & Automation Magazine - June 2013 - 109
IEEE Robotics & Automation Magazine - June 2013 - 110
IEEE Robotics & Automation Magazine - June 2013 - 111
IEEE Robotics & Automation Magazine - June 2013 - 112
IEEE Robotics & Automation Magazine - June 2013 - 113
IEEE Robotics & Automation Magazine - June 2013 - 114
IEEE Robotics & Automation Magazine - June 2013 - 115
IEEE Robotics & Automation Magazine - June 2013 - 116
IEEE Robotics & Automation Magazine - June 2013 - 117
IEEE Robotics & Automation Magazine - June 2013 - 118
IEEE Robotics & Automation Magazine - June 2013 - 119
IEEE Robotics & Automation Magazine - June 2013 - 120
IEEE Robotics & Automation Magazine - June 2013 - 121
IEEE Robotics & Automation Magazine - June 2013 - 122
IEEE Robotics & Automation Magazine - June 2013 - 123
IEEE Robotics & Automation Magazine - June 2013 - 124
IEEE Robotics & Automation Magazine - June 2013 - 125
IEEE Robotics & Automation Magazine - June 2013 - 126
IEEE Robotics & Automation Magazine - June 2013 - 127
IEEE Robotics & Automation Magazine - June 2013 - 128
IEEE Robotics & Automation Magazine - June 2013 - Cover3
IEEE Robotics & Automation Magazine - June 2013 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com