IEEE Robotics & Automation Magazine - June 2018 - 33
L
L
LIP
HIA
Mechanism
(Gantry)
x3
HIA
B
x2
x1
LIP
Mechanism
(Tripteron)
A
Figure 5. A macro-mini robotic system for pHRI. The mini LIP
mechanism is mounted on the end effector of the macro HIA
mechanism.
Figure 6. A schematic representation of a 1 DoF passive-active
mechanism. (Figure courtesy of P.D. Labrecque et al. [13].)
design, they can be modeled as a 1-DoF manipulator; therefore, the analysis of a 1-DoF system is presented. The limits of
the experimental prototype of the macro-mini mechanism
are then specified and used to determine the capabilities of
the macro-mini robot.
In macro-mini architecture, the operational limits are dictated by the size of the LIP mechanism's workspace and by the
HIA mechanism's velocity and acceleration limits. To achieve
intuitive behavior using the passive mechanism, the end effector of the LIP mechanism must be kept within its workspace,
i.e., the HIA mechanism must respond quickly enough to
always reposition the LIP joints in, or close to, their neutral
configuration. If the HIA mechanism is not fast enough, then
the user will reach the limits of the LIP mechanism's workspace and the rendering of a low-impedance interaction to
the user will be limited and unintuitive.
Figure 6 represents a simple, 1-DoF passive-active (macro-
mini) mechanism. In this model, the rail connection between
A and the base represents the macro HIA mechanism, while
the rail connection between A and B represents the mini LIP
mechanism, whose range of motion is 2 L. The position of
body A and body B with respect to the fixed frame are x 1
and x 3, respectively, while x 2 denotes the position of platform B with respect to platform A. It is therefore preferable
to establish the capability of this macro-mini robot to follow
the motion produced by the operator (x 3) given the limited
range of motion of the LIP mechanism (- L # x 2 # L) and
the limited velocity and acceleration of the HIA mechanism.
Figure 6 shows
x3 = x1 + x2 .
(5)
To evaluate the capabilities of the system, it is assumed that
x 3 undergoes a harmonic motion, e.g.,
x 3 = R sin (~t),
(6)
where t is the time, and ~ and R are the frequency and amplitude, respectively, of the input motion. Assuming that the HIA
mechanism is controlled to keep body B at the neutral
(midrange) configuration of the LIP mechanism, the HIA
mechanism driving body A reacts proportionally and in the
same direction as body B. Its motion is therefore expressed as a
harmonic motion of identical frequency and phase, e.g.,
x 1 = D sin (~t),
(7)
where D is the amplitude of motion of the macro HIA mechanism. If the amplitude of motion of the end effector (body B)
is larger than the range of motion of the LIP mechanism, then
the HIA mechanism must contribute accordingly to a displacement whose amplitude is given by
D = (R - L) .
(8)
Given the velocity and acceleration constraints of the actuator of the HIA mechanism, noted here as xo 1, max and xp 1, max, it
is possible to determine the maximum amplitude of the HIA
mechanism as a function of the frequency of the motion
using the first two time derivatives of (7), yielding
D vmax =
xo 1, max
~
,
(9)
,
(10)
and
D amax =
xp 1, max
~
2
where D vmax and D amax, respectively, represent the maximum
amplitudes of x 1 given the velocity and acceleration constraints. Substituting (9) into (8), the maximum amplitude of
input motion x 3 for a given frequency ~ and the passive
joint's motion range L is expressed as
R vmax =
xo 1, max
~
+ L,
(11)
where R vmax is the maximum range of input motion that is
feasible due to the velocity constraint. Similarly, the relationship for R amax, the maximum range of input motion that is
feasible due to the acceleration constraint, is obtained by
substituting (10) into (8), yielding
JUNE 2018
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
33
IEEE Robotics & Automation Magazine - June 2018
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2018
Contents
IEEE Robotics & Automation Magazine - June 2018 - Cover1
IEEE Robotics & Automation Magazine - June 2018 - Cover2
IEEE Robotics & Automation Magazine - June 2018 - Contents
IEEE Robotics & Automation Magazine - June 2018 - 2
IEEE Robotics & Automation Magazine - June 2018 - 3
IEEE Robotics & Automation Magazine - June 2018 - 4
IEEE Robotics & Automation Magazine - June 2018 - 5
IEEE Robotics & Automation Magazine - June 2018 - 6
IEEE Robotics & Automation Magazine - June 2018 - 7
IEEE Robotics & Automation Magazine - June 2018 - 8
IEEE Robotics & Automation Magazine - June 2018 - 9
IEEE Robotics & Automation Magazine - June 2018 - 10
IEEE Robotics & Automation Magazine - June 2018 - 11
IEEE Robotics & Automation Magazine - June 2018 - 12
IEEE Robotics & Automation Magazine - June 2018 - 13
IEEE Robotics & Automation Magazine - June 2018 - 14
IEEE Robotics & Automation Magazine - June 2018 - 15
IEEE Robotics & Automation Magazine - June 2018 - 16
IEEE Robotics & Automation Magazine - June 2018 - 17
IEEE Robotics & Automation Magazine - June 2018 - 18
IEEE Robotics & Automation Magazine - June 2018 - 19
IEEE Robotics & Automation Magazine - June 2018 - 20
IEEE Robotics & Automation Magazine - June 2018 - 21
IEEE Robotics & Automation Magazine - June 2018 - 22
IEEE Robotics & Automation Magazine - June 2018 - 23
IEEE Robotics & Automation Magazine - June 2018 - 24
IEEE Robotics & Automation Magazine - June 2018 - 25
IEEE Robotics & Automation Magazine - June 2018 - 26
IEEE Robotics & Automation Magazine - June 2018 - 27
IEEE Robotics & Automation Magazine - June 2018 - 28
IEEE Robotics & Automation Magazine - June 2018 - 29
IEEE Robotics & Automation Magazine - June 2018 - 30
IEEE Robotics & Automation Magazine - June 2018 - 31
IEEE Robotics & Automation Magazine - June 2018 - 32
IEEE Robotics & Automation Magazine - June 2018 - 33
IEEE Robotics & Automation Magazine - June 2018 - 34
IEEE Robotics & Automation Magazine - June 2018 - 35
IEEE Robotics & Automation Magazine - June 2018 - 36
IEEE Robotics & Automation Magazine - June 2018 - 37
IEEE Robotics & Automation Magazine - June 2018 - 38
IEEE Robotics & Automation Magazine - June 2018 - 39
IEEE Robotics & Automation Magazine - June 2018 - 40
IEEE Robotics & Automation Magazine - June 2018 - 41
IEEE Robotics & Automation Magazine - June 2018 - 42
IEEE Robotics & Automation Magazine - June 2018 - 43
IEEE Robotics & Automation Magazine - June 2018 - 44
IEEE Robotics & Automation Magazine - June 2018 - 45
IEEE Robotics & Automation Magazine - June 2018 - 46
IEEE Robotics & Automation Magazine - June 2018 - 47
IEEE Robotics & Automation Magazine - June 2018 - 48
IEEE Robotics & Automation Magazine - June 2018 - 49
IEEE Robotics & Automation Magazine - June 2018 - 50
IEEE Robotics & Automation Magazine - June 2018 - 51
IEEE Robotics & Automation Magazine - June 2018 - 52
IEEE Robotics & Automation Magazine - June 2018 - 53
IEEE Robotics & Automation Magazine - June 2018 - 54
IEEE Robotics & Automation Magazine - June 2018 - 55
IEEE Robotics & Automation Magazine - June 2018 - 56
IEEE Robotics & Automation Magazine - June 2018 - 57
IEEE Robotics & Automation Magazine - June 2018 - 58
IEEE Robotics & Automation Magazine - June 2018 - 59
IEEE Robotics & Automation Magazine - June 2018 - 60
IEEE Robotics & Automation Magazine - June 2018 - 61
IEEE Robotics & Automation Magazine - June 2018 - 62
IEEE Robotics & Automation Magazine - June 2018 - 63
IEEE Robotics & Automation Magazine - June 2018 - 64
IEEE Robotics & Automation Magazine - June 2018 - 65
IEEE Robotics & Automation Magazine - June 2018 - 66
IEEE Robotics & Automation Magazine - June 2018 - 67
IEEE Robotics & Automation Magazine - June 2018 - 68
IEEE Robotics & Automation Magazine - June 2018 - 69
IEEE Robotics & Automation Magazine - June 2018 - 70
IEEE Robotics & Automation Magazine - June 2018 - 71
IEEE Robotics & Automation Magazine - June 2018 - 72
IEEE Robotics & Automation Magazine - June 2018 - 73
IEEE Robotics & Automation Magazine - June 2018 - 74
IEEE Robotics & Automation Magazine - June 2018 - 75
IEEE Robotics & Automation Magazine - June 2018 - 76
IEEE Robotics & Automation Magazine - June 2018 - 77
IEEE Robotics & Automation Magazine - June 2018 - 78
IEEE Robotics & Automation Magazine - June 2018 - 79
IEEE Robotics & Automation Magazine - June 2018 - 80
IEEE Robotics & Automation Magazine - June 2018 - 81
IEEE Robotics & Automation Magazine - June 2018 - 82
IEEE Robotics & Automation Magazine - June 2018 - 83
IEEE Robotics & Automation Magazine - June 2018 - 84
IEEE Robotics & Automation Magazine - June 2018 - 85
IEEE Robotics & Automation Magazine - June 2018 - 86
IEEE Robotics & Automation Magazine - June 2018 - 87
IEEE Robotics & Automation Magazine - June 2018 - 88
IEEE Robotics & Automation Magazine - June 2018 - 89
IEEE Robotics & Automation Magazine - June 2018 - 90
IEEE Robotics & Automation Magazine - June 2018 - 91
IEEE Robotics & Automation Magazine - June 2018 - 92
IEEE Robotics & Automation Magazine - June 2018 - 93
IEEE Robotics & Automation Magazine - June 2018 - 94
IEEE Robotics & Automation Magazine - June 2018 - 95
IEEE Robotics & Automation Magazine - June 2018 - 96
IEEE Robotics & Automation Magazine - June 2018 - 97
IEEE Robotics & Automation Magazine - June 2018 - 98
IEEE Robotics & Automation Magazine - June 2018 - 99
IEEE Robotics & Automation Magazine - June 2018 - 100
IEEE Robotics & Automation Magazine - June 2018 - 101
IEEE Robotics & Automation Magazine - June 2018 - 102
IEEE Robotics & Automation Magazine - June 2018 - 103
IEEE Robotics & Automation Magazine - June 2018 - 104
IEEE Robotics & Automation Magazine - June 2018 - 105
IEEE Robotics & Automation Magazine - June 2018 - 106
IEEE Robotics & Automation Magazine - June 2018 - 107
IEEE Robotics & Automation Magazine - June 2018 - 108
IEEE Robotics & Automation Magazine - June 2018 - 109
IEEE Robotics & Automation Magazine - June 2018 - 110
IEEE Robotics & Automation Magazine - June 2018 - 111
IEEE Robotics & Automation Magazine - June 2018 - 112
IEEE Robotics & Automation Magazine - June 2018 - 113
IEEE Robotics & Automation Magazine - June 2018 - 114
IEEE Robotics & Automation Magazine - June 2018 - 115
IEEE Robotics & Automation Magazine - June 2018 - 116
IEEE Robotics & Automation Magazine - June 2018 - 117
IEEE Robotics & Automation Magazine - June 2018 - 118
IEEE Robotics & Automation Magazine - June 2018 - 119
IEEE Robotics & Automation Magazine - June 2018 - 120
IEEE Robotics & Automation Magazine - June 2018 - 121
IEEE Robotics & Automation Magazine - June 2018 - 122
IEEE Robotics & Automation Magazine - June 2018 - 123
IEEE Robotics & Automation Magazine - June 2018 - 124
IEEE Robotics & Automation Magazine - June 2018 - 125
IEEE Robotics & Automation Magazine - June 2018 - 126
IEEE Robotics & Automation Magazine - June 2018 - 127
IEEE Robotics & Automation Magazine - June 2018 - 128
IEEE Robotics & Automation Magazine - June 2018 - 129
IEEE Robotics & Automation Magazine - June 2018 - 130
IEEE Robotics & Automation Magazine - June 2018 - 131
IEEE Robotics & Automation Magazine - June 2018 - 132
IEEE Robotics & Automation Magazine - June 2018 - Cover3
IEEE Robotics & Automation Magazine - June 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com