IEEE Robotics & Automation Magazine - June 2020 - 103
recent tool Verisig, in which the NN is transformed into a
hybrid system to provide guarantees before deployment. In
the case of unverified NNs, the outputs of the verification
are used to retrain the network until verification is
achieved. Two illustrative case studies on a quadrotor
unmanned aerial vehicle (UAV) (a pickup/drop-off operation and navigation in a cluttered environment) are presented to validate the proposed framework in simulations
and experiments.
Safety Predictions
As autonomous vehicles find their way into our society, it
becomes critical to guarantee safety against unpredictable
uncertainties and disturbances during their operations at
runtime. In fact, while model-driven motion planning
and control techniques can be robust against noises and
disturbances, they cannot prevent deviations from the
desired behavior during system operation, potentially
leading to unsafe states (e.g., crashing into an obstacle in
the environment due to excessive wind disturbance). To
assure safety during autonomous operations, it is necessary to take the effect of noises and disturbances into
account during planning. Traditional RA tools, such as
Hamilton-Jacobi reachability [1], and hybrid system RA
techniques [2], [3] have proved to be very effective in providing safety guarantees by leveraging knowledge about
the model of the system. However, their computational
complexity makes them difficult to use at runtime, which
is the subject of this article.
On the other hand, contrary to traditional RA tools,
recent developments in machine learning have considerable
potential to enable fast RA thanks to their efficiency and
accuracy. Unfortunately, since the performance of such
learning enabled components (LECs) depends significantly
on the properties of the training data, it is challenging to
provide guarantees in safety-critical operations. To deal
with these challenges, this article presents a framework to
verify LECs for fast, safe monitoring and planning of
autonomous operations.
An NN trained to predict whether an operation will be
safe or unsafe is verified if its output decision (safe or unsafe)
always concurs with the results obtained by running the operation under the worst case conditions in which it was trained.
Since it is unlikely that an NN with this strong property
exists, in this article, we define one that is conservatively verified; in short, it is verified if, at the least, its safe decision output always concurs with the result obtained by running the
actual operation. In other words, if the NN output is safe, the
system can never reach an unsafe state; however, the NN is
allowed to output unsafe when the system will be safe, since
this is a conservative decision. This definition also holds in
the extreme case that an NN outputs only unsafe decisions,
in which a vehicle will be always safe, although it will not be
able to move anywhere.
In the proposed scheme, an NN is trained to recognize
safe and unsafe trajectories for an autonomous vehicle in an
obstacle-populated environment. Specifically, training is
performed, creating a library of trajectories and computing
their reachable sets to make safety decisions; hence, the
computational burden is limited to the offline stage. A trajectory is labeled safe if its reachable sets do not overlap
with any obstacle in the environment; otherwise, it is
marked unsafe.
Verification of the obtained NN is achieved using our
recent technique Verisig [4], in which the NN is transformed
into a hybrid system and the verification problem is cast as a
hybrid system reachability problem. If the NN is not verified,
meaning that it is not safe to be used, the output of the verification is employed as feedback to retrain the NN more conservatively until it is verified. Once the NN is verified, it is
used at runtime as a safety checker for the planned trajectories from an untrained initial state under the effect of
unknown online disturbances. If unsafe, a new trajectory is
planned and tested until a safety-guaranteed course is
obtained, if possible.
Contributions of the article include the following: with the
proposed framework, we 1) develop a fast safety checking and
replanning approach for autonomous vehicles' operations in
cluttered environments under unknown runtime disturbances and 2) leverage a novel NN verification tool, Verisig, to verify and retrain the used NN as a fast safety monitor, before
its deployment.
As a result, with this framework, it is possible to eliminate
the need for computationally expensive RA tools for planning safe trajectories at runtime, and our verification
method, Verisig, is capable of assessing the validity of the
proposed NN. To better illustrate our proposed framework,
two case studies on a quadrotor UAV are presented with simulations and experiments under the presence of unknown
disturbances during runtime: 1) a pickup/drop-off mission
and 2) safe navigation in a cluttered environment.
Verified Safe Motion Planning
Our verified safe motion planning framework consists of
offline and online stages, as depicted in Figure 1. During the
offline phase, a library of trajectories is generated. We
parametrize the trajectory generation based on the initial
state of the UAV, the desired goal position, the location of
the obstacles on the way to the goal site, and the distance
that must be maintained from these obstacles. These trajectory parameters are labeled safe or unsafe using RA, and an
NN is trained with this set of parameters. To be able to use
the NN in autonomous operations, it should be guaranteed
that the trained network never outputs safe when the trajectory is actually unsafe. To provide this guarantee, we verify
the trained NN using our recent tool Verisig, as outlined in
the "Verification" section. In case the NN is not verified, the
Verisig output is utilized to retrain the NN more conservatively (i.e., it outputs more unsafe decisions) until it is verified. Once the NN is verified, it is used to make decisions
about the safety of a new set of trajectory parameters at runtime. If the NN decides that the trajectory is safe, the UAV
JUNE 2020
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
103
IEEE Robotics & Automation Magazine - June 2020
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2020
Contents
IEEE Robotics & Automation Magazine - June 2020 - Cover1
IEEE Robotics & Automation Magazine - June 2020 - Cover2
IEEE Robotics & Automation Magazine - June 2020 - Contents
IEEE Robotics & Automation Magazine - June 2020 - 2
IEEE Robotics & Automation Magazine - June 2020 - 3
IEEE Robotics & Automation Magazine - June 2020 - 4
IEEE Robotics & Automation Magazine - June 2020 - 5
IEEE Robotics & Automation Magazine - June 2020 - 6
IEEE Robotics & Automation Magazine - June 2020 - 7
IEEE Robotics & Automation Magazine - June 2020 - 8
IEEE Robotics & Automation Magazine - June 2020 - 9
IEEE Robotics & Automation Magazine - June 2020 - 10
IEEE Robotics & Automation Magazine - June 2020 - 11
IEEE Robotics & Automation Magazine - June 2020 - 12
IEEE Robotics & Automation Magazine - June 2020 - 13
IEEE Robotics & Automation Magazine - June 2020 - 14
IEEE Robotics & Automation Magazine - June 2020 - 15
IEEE Robotics & Automation Magazine - June 2020 - 16
IEEE Robotics & Automation Magazine - June 2020 - 17
IEEE Robotics & Automation Magazine - June 2020 - 18
IEEE Robotics & Automation Magazine - June 2020 - 19
IEEE Robotics & Automation Magazine - June 2020 - 20
IEEE Robotics & Automation Magazine - June 2020 - 21
IEEE Robotics & Automation Magazine - June 2020 - 22
IEEE Robotics & Automation Magazine - June 2020 - 23
IEEE Robotics & Automation Magazine - June 2020 - 24
IEEE Robotics & Automation Magazine - June 2020 - 25
IEEE Robotics & Automation Magazine - June 2020 - 26
IEEE Robotics & Automation Magazine - June 2020 - 27
IEEE Robotics & Automation Magazine - June 2020 - 28
IEEE Robotics & Automation Magazine - June 2020 - 29
IEEE Robotics & Automation Magazine - June 2020 - 30
IEEE Robotics & Automation Magazine - June 2020 - 31
IEEE Robotics & Automation Magazine - June 2020 - 32
IEEE Robotics & Automation Magazine - June 2020 - 33
IEEE Robotics & Automation Magazine - June 2020 - 34
IEEE Robotics & Automation Magazine - June 2020 - 35
IEEE Robotics & Automation Magazine - June 2020 - 36
IEEE Robotics & Automation Magazine - June 2020 - 37
IEEE Robotics & Automation Magazine - June 2020 - 38
IEEE Robotics & Automation Magazine - June 2020 - 39
IEEE Robotics & Automation Magazine - June 2020 - 40
IEEE Robotics & Automation Magazine - June 2020 - 41
IEEE Robotics & Automation Magazine - June 2020 - 42
IEEE Robotics & Automation Magazine - June 2020 - 43
IEEE Robotics & Automation Magazine - June 2020 - 44
IEEE Robotics & Automation Magazine - June 2020 - 45
IEEE Robotics & Automation Magazine - June 2020 - 46
IEEE Robotics & Automation Magazine - June 2020 - 47
IEEE Robotics & Automation Magazine - June 2020 - 48
IEEE Robotics & Automation Magazine - June 2020 - 49
IEEE Robotics & Automation Magazine - June 2020 - 50
IEEE Robotics & Automation Magazine - June 2020 - 51
IEEE Robotics & Automation Magazine - June 2020 - 52
IEEE Robotics & Automation Magazine - June 2020 - 53
IEEE Robotics & Automation Magazine - June 2020 - 54
IEEE Robotics & Automation Magazine - June 2020 - 55
IEEE Robotics & Automation Magazine - June 2020 - 56
IEEE Robotics & Automation Magazine - June 2020 - 57
IEEE Robotics & Automation Magazine - June 2020 - 58
IEEE Robotics & Automation Magazine - June 2020 - 59
IEEE Robotics & Automation Magazine - June 2020 - 60
IEEE Robotics & Automation Magazine - June 2020 - 61
IEEE Robotics & Automation Magazine - June 2020 - 62
IEEE Robotics & Automation Magazine - June 2020 - 63
IEEE Robotics & Automation Magazine - June 2020 - 64
IEEE Robotics & Automation Magazine - June 2020 - 65
IEEE Robotics & Automation Magazine - June 2020 - 66
IEEE Robotics & Automation Magazine - June 2020 - 67
IEEE Robotics & Automation Magazine - June 2020 - 68
IEEE Robotics & Automation Magazine - June 2020 - 69
IEEE Robotics & Automation Magazine - June 2020 - 70
IEEE Robotics & Automation Magazine - June 2020 - 71
IEEE Robotics & Automation Magazine - June 2020 - 72
IEEE Robotics & Automation Magazine - June 2020 - 73
IEEE Robotics & Automation Magazine - June 2020 - 74
IEEE Robotics & Automation Magazine - June 2020 - 75
IEEE Robotics & Automation Magazine - June 2020 - 76
IEEE Robotics & Automation Magazine - June 2020 - 77
IEEE Robotics & Automation Magazine - June 2020 - 78
IEEE Robotics & Automation Magazine - June 2020 - 79
IEEE Robotics & Automation Magazine - June 2020 - 80
IEEE Robotics & Automation Magazine - June 2020 - 81
IEEE Robotics & Automation Magazine - June 2020 - 82
IEEE Robotics & Automation Magazine - June 2020 - 83
IEEE Robotics & Automation Magazine - June 2020 - 84
IEEE Robotics & Automation Magazine - June 2020 - 85
IEEE Robotics & Automation Magazine - June 2020 - 86
IEEE Robotics & Automation Magazine - June 2020 - 87
IEEE Robotics & Automation Magazine - June 2020 - 88
IEEE Robotics & Automation Magazine - June 2020 - 89
IEEE Robotics & Automation Magazine - June 2020 - 90
IEEE Robotics & Automation Magazine - June 2020 - 91
IEEE Robotics & Automation Magazine - June 2020 - 92
IEEE Robotics & Automation Magazine - June 2020 - 93
IEEE Robotics & Automation Magazine - June 2020 - 94
IEEE Robotics & Automation Magazine - June 2020 - 95
IEEE Robotics & Automation Magazine - June 2020 - 96
IEEE Robotics & Automation Magazine - June 2020 - 97
IEEE Robotics & Automation Magazine - June 2020 - 98
IEEE Robotics & Automation Magazine - June 2020 - 99
IEEE Robotics & Automation Magazine - June 2020 - 100
IEEE Robotics & Automation Magazine - June 2020 - 101
IEEE Robotics & Automation Magazine - June 2020 - 102
IEEE Robotics & Automation Magazine - June 2020 - 103
IEEE Robotics & Automation Magazine - June 2020 - 104
IEEE Robotics & Automation Magazine - June 2020 - 105
IEEE Robotics & Automation Magazine - June 2020 - 106
IEEE Robotics & Automation Magazine - June 2020 - 107
IEEE Robotics & Automation Magazine - June 2020 - 108
IEEE Robotics & Automation Magazine - June 2020 - 109
IEEE Robotics & Automation Magazine - June 2020 - 110
IEEE Robotics & Automation Magazine - June 2020 - 111
IEEE Robotics & Automation Magazine - June 2020 - 112
IEEE Robotics & Automation Magazine - June 2020 - 113
IEEE Robotics & Automation Magazine - June 2020 - 114
IEEE Robotics & Automation Magazine - June 2020 - 115
IEEE Robotics & Automation Magazine - June 2020 - 116
IEEE Robotics & Automation Magazine - June 2020 - 117
IEEE Robotics & Automation Magazine - June 2020 - 118
IEEE Robotics & Automation Magazine - June 2020 - 119
IEEE Robotics & Automation Magazine - June 2020 - 120
IEEE Robotics & Automation Magazine - June 2020 - 121
IEEE Robotics & Automation Magazine - June 2020 - 122
IEEE Robotics & Automation Magazine - June 2020 - 123
IEEE Robotics & Automation Magazine - June 2020 - 124
IEEE Robotics & Automation Magazine - June 2020 - 125
IEEE Robotics & Automation Magazine - June 2020 - 126
IEEE Robotics & Automation Magazine - June 2020 - 127
IEEE Robotics & Automation Magazine - June 2020 - 128
IEEE Robotics & Automation Magazine - June 2020 - 129
IEEE Robotics & Automation Magazine - June 2020 - 130
IEEE Robotics & Automation Magazine - June 2020 - 131
IEEE Robotics & Automation Magazine - June 2020 - 132
IEEE Robotics & Automation Magazine - June 2020 - 133
IEEE Robotics & Automation Magazine - June 2020 - 134
IEEE Robotics & Automation Magazine - June 2020 - 135
IEEE Robotics & Automation Magazine - June 2020 - 136
IEEE Robotics & Automation Magazine - June 2020 - 137
IEEE Robotics & Automation Magazine - June 2020 - 138
IEEE Robotics & Automation Magazine - June 2020 - 139
IEEE Robotics & Automation Magazine - June 2020 - 140
IEEE Robotics & Automation Magazine - June 2020 - 141
IEEE Robotics & Automation Magazine - June 2020 - 142
IEEE Robotics & Automation Magazine - June 2020 - 143
IEEE Robotics & Automation Magazine - June 2020 - 144
IEEE Robotics & Automation Magazine - June 2020 - 145
IEEE Robotics & Automation Magazine - June 2020 - 146
IEEE Robotics & Automation Magazine - June 2020 - 147
IEEE Robotics & Automation Magazine - June 2020 - 148
IEEE Robotics & Automation Magazine - June 2020 - 149
IEEE Robotics & Automation Magazine - June 2020 - 150
IEEE Robotics & Automation Magazine - June 2020 - 151
IEEE Robotics & Automation Magazine - June 2020 - 152
IEEE Robotics & Automation Magazine - June 2020 - 153
IEEE Robotics & Automation Magazine - June 2020 - 154
IEEE Robotics & Automation Magazine - June 2020 - 155
IEEE Robotics & Automation Magazine - June 2020 - 156
IEEE Robotics & Automation Magazine - June 2020 - 157
IEEE Robotics & Automation Magazine - June 2020 - 158
IEEE Robotics & Automation Magazine - June 2020 - 159
IEEE Robotics & Automation Magazine - June 2020 - 160
IEEE Robotics & Automation Magazine - June 2020 - 161
IEEE Robotics & Automation Magazine - June 2020 - 162
IEEE Robotics & Automation Magazine - June 2020 - 163
IEEE Robotics & Automation Magazine - June 2020 - 164
IEEE Robotics & Automation Magazine - June 2020 - 165
IEEE Robotics & Automation Magazine - June 2020 - 166
IEEE Robotics & Automation Magazine - June 2020 - 167
IEEE Robotics & Automation Magazine - June 2020 - 168
IEEE Robotics & Automation Magazine - June 2020 - 169
IEEE Robotics & Automation Magazine - June 2020 - 170
IEEE Robotics & Automation Magazine - June 2020 - 171
IEEE Robotics & Automation Magazine - June 2020 - 172
IEEE Robotics & Automation Magazine - June 2020 - 173
IEEE Robotics & Automation Magazine - June 2020 - 174
IEEE Robotics & Automation Magazine - June 2020 - 175
IEEE Robotics & Automation Magazine - June 2020 - 176
IEEE Robotics & Automation Magazine - June 2020 - 177
IEEE Robotics & Automation Magazine - June 2020 - 178
IEEE Robotics & Automation Magazine - June 2020 - 179
IEEE Robotics & Automation Magazine - June 2020 - 180
IEEE Robotics & Automation Magazine - June 2020 - 181
IEEE Robotics & Automation Magazine - June 2020 - 182
IEEE Robotics & Automation Magazine - June 2020 - 183
IEEE Robotics & Automation Magazine - June 2020 - 184
IEEE Robotics & Automation Magazine - June 2020 - Cover3
IEEE Robotics & Automation Magazine - June 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com