IEEE Robotics & Automation Magazine - June 2020 - 119
Multiple approximations are available that estimate the same
output with varying accuracy and costs. More generally, K
different fidelity approximations, f (1), f, f (K ), are available
representing the relationship between the input and output,
f (i) : X " Y, i = 1, f, K. Obtaining observations from the
ith approximation incurs cost c (i), and typically c (i) 1 c ( j)
for i 1 j.
There has been a significant surge in multifidelity methods
research following seminal work on autoregressive schemes.
Kennedy and O'Hagan [9] used GPs to explore ways in which
runs from several levels of a computer code can be used to
make inferences about the output of the complex computer
code. A complex code approximates reality better, but, in
extreme cases, a single run of a complex code may take many
days. The GP framework is a natural candidate for estimating
a phenomenon by combining data from various fidelity
approximations [10], [11].
Multifidelity methods have been widely used in RL applications to automatically optimize the parameters of control
policies based on data from simulations and experiments.
Cutler et al. [2] introduced a framework that specifies the
rules concerning when to collect observations from different
fidelity simulators. Marco et al. [12] introduced a Bayesian
optimization algorithm that uses entropy [13] as a metric to
decide which simulator to collect the observations from. The
authors employed their algorithm for a cart-pole setup with a
Simulink model as the simulator.
Two closely related techniques addressing sim2real are
domain randomization and domain adaptation. In both
cases, the simulators can be controlled via a set of parameters. The underlying hypothesis is that some unknown set of
parameters closely matches the real-world conditions. In
domain randomization, the simulator parameters are randomly sampled, and the agent is trained across all of the
parameter values. In domain adaptation, the parameter values are updated during learning.
However, the goal in these methods is to reduce the reality gap using a parameterized simulator [1], [14]. This
restricts the use of such approaches to scenarios where altering the parameters for a simulator itself is trivial. Furthermore, only one type of simulator is used. In contrast, MFRL
techniques leverage multiple simulators with varying fidelity
levels and costs to operate. In addition, in MFRL, the policy
learned in the highest-fidelity simulator (real-world) uses
data from the same environment, unlike sim2real. As such,
these approaches are beneficial when there is a significant
reality gap, where maneuvers learned in simulators may not
translate to the real world.
Our work is inspired by the work of Cutler et al. [2], which
allows for bidirectional transfer of information between simulators. However, they used a tabular representation of the values function. We introduce two algorithms, in a similar spirit,
that can decide from which simulator to collect the observations. We hypothesize that using a GP with an MFRL framework will lead to further improvements in the number of
samples required from the real world.
Background
RL
RL problems can be formulated as a Markov decision process:
M = GS, A, P, R, cH, with state space S, action space A,
transition function P(s t, a t, s t + 1) 7 [0, 1], reward function
R (s t, a t) 7 R , and discount factor c ! [0, 1). A policy
r : S " A maps states to actions. Together with the initial state
s 0, a policy forms a trajectory g = " [s 0, a 0, r0], [s 1, a 1, r1], f,
where a t = r(s t). rt and s t + 1 are sampled from the reward
and transition functions, respectively.
We consider a scenario where the goal is to maximize
the infinite-horizon, discounted reward starting from a state
s 0 . The value function for state s 0 is defined as
V r(s 0) = E[/ tt == 03 c t rt (s t, a t)| a t = r (s t)]. The state-action
value function or Q value of each state-action pair
t
under policy r is defined as Q r(s, a) = E[/ tt == 3
0 c rt +1
(s t + 1, a t + 1)| s 0 = s, a 0 = a]. which is the expected sum of discounted rewards obtained starting from state s, taking action
a and following r thereafter. The optimal Q value function
Q ) for a state-action pair (s, a) satisfies Q )(s, a) =
max r Q r (s, a) = V )(s) and can be written recursively as
Q )(s t, a t) = E s t + 1[r (s t, a t) + cV )(s t + 1)].
(1)
Our objective was to find the optimal policy r )(s) =
argmax a Q )(s, a) when R and P are not known to the agent.
In model-based approaches, the agent learns R and P first and
then finds an optimal policy by calculating optimal Q values
from (1); the most commonly used model-based approach is VI
[15], [16]. We can also directly estimate the optimal Q values,
often known as model-free approaches [17], or directly calculate
the optimal policy, often known as policy-gradient approaches
[18]. The most commonly used model-free algorithm is
Q-learning. For the GP-VI-MFRL implementation, we use GPs
to estimate the transition function and VI to calculate the optimal policy. For our GPQ-MFRL implementation, we use
Q-learning to perform the policy update using GP regression.
In this article, two versions (model based and model free)
of GP-based MFRL are introduced. It should be remembered
that, although model-based algorithms are generally more
sample efficient in comparison to model-free algorithms, they
are not memory efficient [16]. Hence, depending on the
application, the model-free approach (GPQ-MFRL) may be a
suitable alternative to the more sample-efficient model-based
GP-VI-MFRL.
GPs
GPs are Bayesian nonparametric function approximators.
They can be defined as a collection of infinitely many random
variables, any finite subset X = " x 1, f, x k , of which is jointly Gaussian, with mean vector m ! R k and covariance matrix
K ! R k # k [19].
Let X = " x 1, f, x k , denote the set of training inputs, and
let y = " y 1, f, y k , denote the corresponding training outputs. GPs can be used to predict the output value at a new test
JUNE 2020
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
119
IEEE Robotics & Automation Magazine - June 2020
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2020
Contents
IEEE Robotics & Automation Magazine - June 2020 - Cover1
IEEE Robotics & Automation Magazine - June 2020 - Cover2
IEEE Robotics & Automation Magazine - June 2020 - Contents
IEEE Robotics & Automation Magazine - June 2020 - 2
IEEE Robotics & Automation Magazine - June 2020 - 3
IEEE Robotics & Automation Magazine - June 2020 - 4
IEEE Robotics & Automation Magazine - June 2020 - 5
IEEE Robotics & Automation Magazine - June 2020 - 6
IEEE Robotics & Automation Magazine - June 2020 - 7
IEEE Robotics & Automation Magazine - June 2020 - 8
IEEE Robotics & Automation Magazine - June 2020 - 9
IEEE Robotics & Automation Magazine - June 2020 - 10
IEEE Robotics & Automation Magazine - June 2020 - 11
IEEE Robotics & Automation Magazine - June 2020 - 12
IEEE Robotics & Automation Magazine - June 2020 - 13
IEEE Robotics & Automation Magazine - June 2020 - 14
IEEE Robotics & Automation Magazine - June 2020 - 15
IEEE Robotics & Automation Magazine - June 2020 - 16
IEEE Robotics & Automation Magazine - June 2020 - 17
IEEE Robotics & Automation Magazine - June 2020 - 18
IEEE Robotics & Automation Magazine - June 2020 - 19
IEEE Robotics & Automation Magazine - June 2020 - 20
IEEE Robotics & Automation Magazine - June 2020 - 21
IEEE Robotics & Automation Magazine - June 2020 - 22
IEEE Robotics & Automation Magazine - June 2020 - 23
IEEE Robotics & Automation Magazine - June 2020 - 24
IEEE Robotics & Automation Magazine - June 2020 - 25
IEEE Robotics & Automation Magazine - June 2020 - 26
IEEE Robotics & Automation Magazine - June 2020 - 27
IEEE Robotics & Automation Magazine - June 2020 - 28
IEEE Robotics & Automation Magazine - June 2020 - 29
IEEE Robotics & Automation Magazine - June 2020 - 30
IEEE Robotics & Automation Magazine - June 2020 - 31
IEEE Robotics & Automation Magazine - June 2020 - 32
IEEE Robotics & Automation Magazine - June 2020 - 33
IEEE Robotics & Automation Magazine - June 2020 - 34
IEEE Robotics & Automation Magazine - June 2020 - 35
IEEE Robotics & Automation Magazine - June 2020 - 36
IEEE Robotics & Automation Magazine - June 2020 - 37
IEEE Robotics & Automation Magazine - June 2020 - 38
IEEE Robotics & Automation Magazine - June 2020 - 39
IEEE Robotics & Automation Magazine - June 2020 - 40
IEEE Robotics & Automation Magazine - June 2020 - 41
IEEE Robotics & Automation Magazine - June 2020 - 42
IEEE Robotics & Automation Magazine - June 2020 - 43
IEEE Robotics & Automation Magazine - June 2020 - 44
IEEE Robotics & Automation Magazine - June 2020 - 45
IEEE Robotics & Automation Magazine - June 2020 - 46
IEEE Robotics & Automation Magazine - June 2020 - 47
IEEE Robotics & Automation Magazine - June 2020 - 48
IEEE Robotics & Automation Magazine - June 2020 - 49
IEEE Robotics & Automation Magazine - June 2020 - 50
IEEE Robotics & Automation Magazine - June 2020 - 51
IEEE Robotics & Automation Magazine - June 2020 - 52
IEEE Robotics & Automation Magazine - June 2020 - 53
IEEE Robotics & Automation Magazine - June 2020 - 54
IEEE Robotics & Automation Magazine - June 2020 - 55
IEEE Robotics & Automation Magazine - June 2020 - 56
IEEE Robotics & Automation Magazine - June 2020 - 57
IEEE Robotics & Automation Magazine - June 2020 - 58
IEEE Robotics & Automation Magazine - June 2020 - 59
IEEE Robotics & Automation Magazine - June 2020 - 60
IEEE Robotics & Automation Magazine - June 2020 - 61
IEEE Robotics & Automation Magazine - June 2020 - 62
IEEE Robotics & Automation Magazine - June 2020 - 63
IEEE Robotics & Automation Magazine - June 2020 - 64
IEEE Robotics & Automation Magazine - June 2020 - 65
IEEE Robotics & Automation Magazine - June 2020 - 66
IEEE Robotics & Automation Magazine - June 2020 - 67
IEEE Robotics & Automation Magazine - June 2020 - 68
IEEE Robotics & Automation Magazine - June 2020 - 69
IEEE Robotics & Automation Magazine - June 2020 - 70
IEEE Robotics & Automation Magazine - June 2020 - 71
IEEE Robotics & Automation Magazine - June 2020 - 72
IEEE Robotics & Automation Magazine - June 2020 - 73
IEEE Robotics & Automation Magazine - June 2020 - 74
IEEE Robotics & Automation Magazine - June 2020 - 75
IEEE Robotics & Automation Magazine - June 2020 - 76
IEEE Robotics & Automation Magazine - June 2020 - 77
IEEE Robotics & Automation Magazine - June 2020 - 78
IEEE Robotics & Automation Magazine - June 2020 - 79
IEEE Robotics & Automation Magazine - June 2020 - 80
IEEE Robotics & Automation Magazine - June 2020 - 81
IEEE Robotics & Automation Magazine - June 2020 - 82
IEEE Robotics & Automation Magazine - June 2020 - 83
IEEE Robotics & Automation Magazine - June 2020 - 84
IEEE Robotics & Automation Magazine - June 2020 - 85
IEEE Robotics & Automation Magazine - June 2020 - 86
IEEE Robotics & Automation Magazine - June 2020 - 87
IEEE Robotics & Automation Magazine - June 2020 - 88
IEEE Robotics & Automation Magazine - June 2020 - 89
IEEE Robotics & Automation Magazine - June 2020 - 90
IEEE Robotics & Automation Magazine - June 2020 - 91
IEEE Robotics & Automation Magazine - June 2020 - 92
IEEE Robotics & Automation Magazine - June 2020 - 93
IEEE Robotics & Automation Magazine - June 2020 - 94
IEEE Robotics & Automation Magazine - June 2020 - 95
IEEE Robotics & Automation Magazine - June 2020 - 96
IEEE Robotics & Automation Magazine - June 2020 - 97
IEEE Robotics & Automation Magazine - June 2020 - 98
IEEE Robotics & Automation Magazine - June 2020 - 99
IEEE Robotics & Automation Magazine - June 2020 - 100
IEEE Robotics & Automation Magazine - June 2020 - 101
IEEE Robotics & Automation Magazine - June 2020 - 102
IEEE Robotics & Automation Magazine - June 2020 - 103
IEEE Robotics & Automation Magazine - June 2020 - 104
IEEE Robotics & Automation Magazine - June 2020 - 105
IEEE Robotics & Automation Magazine - June 2020 - 106
IEEE Robotics & Automation Magazine - June 2020 - 107
IEEE Robotics & Automation Magazine - June 2020 - 108
IEEE Robotics & Automation Magazine - June 2020 - 109
IEEE Robotics & Automation Magazine - June 2020 - 110
IEEE Robotics & Automation Magazine - June 2020 - 111
IEEE Robotics & Automation Magazine - June 2020 - 112
IEEE Robotics & Automation Magazine - June 2020 - 113
IEEE Robotics & Automation Magazine - June 2020 - 114
IEEE Robotics & Automation Magazine - June 2020 - 115
IEEE Robotics & Automation Magazine - June 2020 - 116
IEEE Robotics & Automation Magazine - June 2020 - 117
IEEE Robotics & Automation Magazine - June 2020 - 118
IEEE Robotics & Automation Magazine - June 2020 - 119
IEEE Robotics & Automation Magazine - June 2020 - 120
IEEE Robotics & Automation Magazine - June 2020 - 121
IEEE Robotics & Automation Magazine - June 2020 - 122
IEEE Robotics & Automation Magazine - June 2020 - 123
IEEE Robotics & Automation Magazine - June 2020 - 124
IEEE Robotics & Automation Magazine - June 2020 - 125
IEEE Robotics & Automation Magazine - June 2020 - 126
IEEE Robotics & Automation Magazine - June 2020 - 127
IEEE Robotics & Automation Magazine - June 2020 - 128
IEEE Robotics & Automation Magazine - June 2020 - 129
IEEE Robotics & Automation Magazine - June 2020 - 130
IEEE Robotics & Automation Magazine - June 2020 - 131
IEEE Robotics & Automation Magazine - June 2020 - 132
IEEE Robotics & Automation Magazine - June 2020 - 133
IEEE Robotics & Automation Magazine - June 2020 - 134
IEEE Robotics & Automation Magazine - June 2020 - 135
IEEE Robotics & Automation Magazine - June 2020 - 136
IEEE Robotics & Automation Magazine - June 2020 - 137
IEEE Robotics & Automation Magazine - June 2020 - 138
IEEE Robotics & Automation Magazine - June 2020 - 139
IEEE Robotics & Automation Magazine - June 2020 - 140
IEEE Robotics & Automation Magazine - June 2020 - 141
IEEE Robotics & Automation Magazine - June 2020 - 142
IEEE Robotics & Automation Magazine - June 2020 - 143
IEEE Robotics & Automation Magazine - June 2020 - 144
IEEE Robotics & Automation Magazine - June 2020 - 145
IEEE Robotics & Automation Magazine - June 2020 - 146
IEEE Robotics & Automation Magazine - June 2020 - 147
IEEE Robotics & Automation Magazine - June 2020 - 148
IEEE Robotics & Automation Magazine - June 2020 - 149
IEEE Robotics & Automation Magazine - June 2020 - 150
IEEE Robotics & Automation Magazine - June 2020 - 151
IEEE Robotics & Automation Magazine - June 2020 - 152
IEEE Robotics & Automation Magazine - June 2020 - 153
IEEE Robotics & Automation Magazine - June 2020 - 154
IEEE Robotics & Automation Magazine - June 2020 - 155
IEEE Robotics & Automation Magazine - June 2020 - 156
IEEE Robotics & Automation Magazine - June 2020 - 157
IEEE Robotics & Automation Magazine - June 2020 - 158
IEEE Robotics & Automation Magazine - June 2020 - 159
IEEE Robotics & Automation Magazine - June 2020 - 160
IEEE Robotics & Automation Magazine - June 2020 - 161
IEEE Robotics & Automation Magazine - June 2020 - 162
IEEE Robotics & Automation Magazine - June 2020 - 163
IEEE Robotics & Automation Magazine - June 2020 - 164
IEEE Robotics & Automation Magazine - June 2020 - 165
IEEE Robotics & Automation Magazine - June 2020 - 166
IEEE Robotics & Automation Magazine - June 2020 - 167
IEEE Robotics & Automation Magazine - June 2020 - 168
IEEE Robotics & Automation Magazine - June 2020 - 169
IEEE Robotics & Automation Magazine - June 2020 - 170
IEEE Robotics & Automation Magazine - June 2020 - 171
IEEE Robotics & Automation Magazine - June 2020 - 172
IEEE Robotics & Automation Magazine - June 2020 - 173
IEEE Robotics & Automation Magazine - June 2020 - 174
IEEE Robotics & Automation Magazine - June 2020 - 175
IEEE Robotics & Automation Magazine - June 2020 - 176
IEEE Robotics & Automation Magazine - June 2020 - 177
IEEE Robotics & Automation Magazine - June 2020 - 178
IEEE Robotics & Automation Magazine - June 2020 - 179
IEEE Robotics & Automation Magazine - June 2020 - 180
IEEE Robotics & Automation Magazine - June 2020 - 181
IEEE Robotics & Automation Magazine - June 2020 - 182
IEEE Robotics & Automation Magazine - June 2020 - 183
IEEE Robotics & Automation Magazine - June 2020 - 184
IEEE Robotics & Automation Magazine - June 2020 - Cover3
IEEE Robotics & Automation Magazine - June 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com