IEEE Robotics & Automation Magazine - June 2020 - 26
share a common network part (the blue box), which allows
extracting common latent features.
We assume that the covariance is a diagonal matrix R.
According to [17], a GMM with a diagonal variance matrix
approximates any given density function to arbitrary accuracy. The diagonal covariance output has the same dimension as
the mean output. For K components, an MDN has K pairs of
mean and variance outputs. Each pair corresponds to a mixture
component of a GMM.
The dimension of the MP parameters, as the output of the
MDN, determines the accuracy of the trajectory representation. With more SEKs, the MP represents the motion in a
more accurate way. In the following experiments, we use
10 SEKs for each dimension. As an example, the output mean
vector has 30 dimensions for a 3D motion trajectory, and there
are a total of K + K # 30 # 2 values in the MDN output.
For one single demonstration, we calculate w by solving
the least-square problem for (2). With M demonstrations,
a training data set " (q i, w i) ,iM= 1 is collected. The NLL is
written as
M
K
i =1
k =1
l NLL (H) = - / log e / r k (q i; H) N (w i; n (q i; H), R (q i; H)) o,
(5)
where H is the parameters of the network, and
N ^w i; n i, R ih =
(2r )
1
d/ 2
1/2
|R i |
· exp e - 1
2
d
(w i, j - n i, j) 2
j=1
v i, j
/
2
o,
(6)
where d is the dimension of the output, n i = n (q i; H), and
R i = R (q i; H). A stochastic gradient descent method is used
to minimize the NLL.
According to previous works [18], [19], training an MDN
with the NLL suffers from mode collapse. In [18], to avoid
the mode collapse and reduce learning complexity, Hjorth
and Nabney suggest fixing the mean and variance on a grid
defined in the output space and training only the model that
outputs the mixing coefficients to reduce the NLL. If there
are enough components regularly distributed in the output
space, fixed means and variances do not reduce the representation capability. However, for large-dimensional outputs,
such as MP parameters, this method leads to a sizeable
intractable grid.
In [19], Makansi et al. used an MDN to predict the distribution of future car positions based on a current car
position. To avoid mode collapse, they separated the MDN
into two parts: a sampling and inference network. The sampling network takes the current car position as input and
outputs a fixed number of hypotheses for future car positions. The authors trained the sampling network to place
hypotheses to cover all of the observed outputs diversely.
Based on these hypotheses, an inference network infers the
parameters of the GMM. The MDN is a combination of the
sampling and inference networks. The proposed method
avoids mode collapse for the car-position prediction.
26
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
JUNE 2020
However, for a high-dimensional output, such as MP
parameters, the sampling network requires a large output
dimension. Hence, it is difficult to apply both methods to
our problem.
Entropy Costs for the MDN
Before introducing the entropy cost function, we first inspect
the reasons that mode and model collapses occur when learning an MDN from demonstrations. Mode collapse occurs if
the demonstrations associated with different modes for a task
parameter query are imbalanced. For example, in Figure 1(a),
only a small number of demonstrations take the path from
the right side. By maximizing the likelihood of all demonstrations, the MDN tends to output a small mixing coefficient for
the mixture component, which corresponds to the mode with
fewer associated training data. In theory, it is correct to associate a small probability with an event that rarely happens in the
observations. However, the reasons for the imbalance of the
demonstrations in different modes, such as the habit of the
demonstrator, can be meaningless for correct motion generation. It is often the case that we cannot collect enough demonstrations to cover all modes. Even if there are only a few
demonstrations, where the human accomplishes the task with
particular types of motions, the robot should learn these
motions to increase motion diversity.
Model collapse occurs in particular when relatively few
demonstrations are available. Several mixture components of
the MDN, which are represented by neural networks, are powerful enough to overfit all demonstrations. After training of the
MDN, instead of all K mixture components, it uses only a subset of them, which corresponds to the local minima of the
NLL and results in poor performance of the MDN for some
task parameter queries. As shown in Figure 1(b), one of the
two models disappears with the original MDN, and the MDN
performs similarly to the GPR. Compared to mode collapse,
model collapse is more severe because it can lead to the failure
of task execution.
To reduce the occurrence of mode and model collapses,
we introduce the negative model entropy cost function
as follows:
l model (H) =
K
/ p (m = k | D ; H) log p(m = k | D ; H),
k=1
(7)
where
p (m = k | D ; H) =
M
/ r k (q i; H) p(q i),
i=1
(8)
where m is the component index, and p (q i) ? M -1. By minimizing the cost, we increase the uncertainty of the model
labels when considering all demonstrations D. A high uncertainty of the model labels is equivalent to either equally distributed mixing coefficients for each task parameter query or
equally distributed demonstrations to different models. In the
former case, if all mixing coefficients for one specific task
IEEE Robotics & Automation Magazine - June 2020
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2020
Contents
IEEE Robotics & Automation Magazine - June 2020 - Cover1
IEEE Robotics & Automation Magazine - June 2020 - Cover2
IEEE Robotics & Automation Magazine - June 2020 - Contents
IEEE Robotics & Automation Magazine - June 2020 - 2
IEEE Robotics & Automation Magazine - June 2020 - 3
IEEE Robotics & Automation Magazine - June 2020 - 4
IEEE Robotics & Automation Magazine - June 2020 - 5
IEEE Robotics & Automation Magazine - June 2020 - 6
IEEE Robotics & Automation Magazine - June 2020 - 7
IEEE Robotics & Automation Magazine - June 2020 - 8
IEEE Robotics & Automation Magazine - June 2020 - 9
IEEE Robotics & Automation Magazine - June 2020 - 10
IEEE Robotics & Automation Magazine - June 2020 - 11
IEEE Robotics & Automation Magazine - June 2020 - 12
IEEE Robotics & Automation Magazine - June 2020 - 13
IEEE Robotics & Automation Magazine - June 2020 - 14
IEEE Robotics & Automation Magazine - June 2020 - 15
IEEE Robotics & Automation Magazine - June 2020 - 16
IEEE Robotics & Automation Magazine - June 2020 - 17
IEEE Robotics & Automation Magazine - June 2020 - 18
IEEE Robotics & Automation Magazine - June 2020 - 19
IEEE Robotics & Automation Magazine - June 2020 - 20
IEEE Robotics & Automation Magazine - June 2020 - 21
IEEE Robotics & Automation Magazine - June 2020 - 22
IEEE Robotics & Automation Magazine - June 2020 - 23
IEEE Robotics & Automation Magazine - June 2020 - 24
IEEE Robotics & Automation Magazine - June 2020 - 25
IEEE Robotics & Automation Magazine - June 2020 - 26
IEEE Robotics & Automation Magazine - June 2020 - 27
IEEE Robotics & Automation Magazine - June 2020 - 28
IEEE Robotics & Automation Magazine - June 2020 - 29
IEEE Robotics & Automation Magazine - June 2020 - 30
IEEE Robotics & Automation Magazine - June 2020 - 31
IEEE Robotics & Automation Magazine - June 2020 - 32
IEEE Robotics & Automation Magazine - June 2020 - 33
IEEE Robotics & Automation Magazine - June 2020 - 34
IEEE Robotics & Automation Magazine - June 2020 - 35
IEEE Robotics & Automation Magazine - June 2020 - 36
IEEE Robotics & Automation Magazine - June 2020 - 37
IEEE Robotics & Automation Magazine - June 2020 - 38
IEEE Robotics & Automation Magazine - June 2020 - 39
IEEE Robotics & Automation Magazine - June 2020 - 40
IEEE Robotics & Automation Magazine - June 2020 - 41
IEEE Robotics & Automation Magazine - June 2020 - 42
IEEE Robotics & Automation Magazine - June 2020 - 43
IEEE Robotics & Automation Magazine - June 2020 - 44
IEEE Robotics & Automation Magazine - June 2020 - 45
IEEE Robotics & Automation Magazine - June 2020 - 46
IEEE Robotics & Automation Magazine - June 2020 - 47
IEEE Robotics & Automation Magazine - June 2020 - 48
IEEE Robotics & Automation Magazine - June 2020 - 49
IEEE Robotics & Automation Magazine - June 2020 - 50
IEEE Robotics & Automation Magazine - June 2020 - 51
IEEE Robotics & Automation Magazine - June 2020 - 52
IEEE Robotics & Automation Magazine - June 2020 - 53
IEEE Robotics & Automation Magazine - June 2020 - 54
IEEE Robotics & Automation Magazine - June 2020 - 55
IEEE Robotics & Automation Magazine - June 2020 - 56
IEEE Robotics & Automation Magazine - June 2020 - 57
IEEE Robotics & Automation Magazine - June 2020 - 58
IEEE Robotics & Automation Magazine - June 2020 - 59
IEEE Robotics & Automation Magazine - June 2020 - 60
IEEE Robotics & Automation Magazine - June 2020 - 61
IEEE Robotics & Automation Magazine - June 2020 - 62
IEEE Robotics & Automation Magazine - June 2020 - 63
IEEE Robotics & Automation Magazine - June 2020 - 64
IEEE Robotics & Automation Magazine - June 2020 - 65
IEEE Robotics & Automation Magazine - June 2020 - 66
IEEE Robotics & Automation Magazine - June 2020 - 67
IEEE Robotics & Automation Magazine - June 2020 - 68
IEEE Robotics & Automation Magazine - June 2020 - 69
IEEE Robotics & Automation Magazine - June 2020 - 70
IEEE Robotics & Automation Magazine - June 2020 - 71
IEEE Robotics & Automation Magazine - June 2020 - 72
IEEE Robotics & Automation Magazine - June 2020 - 73
IEEE Robotics & Automation Magazine - June 2020 - 74
IEEE Robotics & Automation Magazine - June 2020 - 75
IEEE Robotics & Automation Magazine - June 2020 - 76
IEEE Robotics & Automation Magazine - June 2020 - 77
IEEE Robotics & Automation Magazine - June 2020 - 78
IEEE Robotics & Automation Magazine - June 2020 - 79
IEEE Robotics & Automation Magazine - June 2020 - 80
IEEE Robotics & Automation Magazine - June 2020 - 81
IEEE Robotics & Automation Magazine - June 2020 - 82
IEEE Robotics & Automation Magazine - June 2020 - 83
IEEE Robotics & Automation Magazine - June 2020 - 84
IEEE Robotics & Automation Magazine - June 2020 - 85
IEEE Robotics & Automation Magazine - June 2020 - 86
IEEE Robotics & Automation Magazine - June 2020 - 87
IEEE Robotics & Automation Magazine - June 2020 - 88
IEEE Robotics & Automation Magazine - June 2020 - 89
IEEE Robotics & Automation Magazine - June 2020 - 90
IEEE Robotics & Automation Magazine - June 2020 - 91
IEEE Robotics & Automation Magazine - June 2020 - 92
IEEE Robotics & Automation Magazine - June 2020 - 93
IEEE Robotics & Automation Magazine - June 2020 - 94
IEEE Robotics & Automation Magazine - June 2020 - 95
IEEE Robotics & Automation Magazine - June 2020 - 96
IEEE Robotics & Automation Magazine - June 2020 - 97
IEEE Robotics & Automation Magazine - June 2020 - 98
IEEE Robotics & Automation Magazine - June 2020 - 99
IEEE Robotics & Automation Magazine - June 2020 - 100
IEEE Robotics & Automation Magazine - June 2020 - 101
IEEE Robotics & Automation Magazine - June 2020 - 102
IEEE Robotics & Automation Magazine - June 2020 - 103
IEEE Robotics & Automation Magazine - June 2020 - 104
IEEE Robotics & Automation Magazine - June 2020 - 105
IEEE Robotics & Automation Magazine - June 2020 - 106
IEEE Robotics & Automation Magazine - June 2020 - 107
IEEE Robotics & Automation Magazine - June 2020 - 108
IEEE Robotics & Automation Magazine - June 2020 - 109
IEEE Robotics & Automation Magazine - June 2020 - 110
IEEE Robotics & Automation Magazine - June 2020 - 111
IEEE Robotics & Automation Magazine - June 2020 - 112
IEEE Robotics & Automation Magazine - June 2020 - 113
IEEE Robotics & Automation Magazine - June 2020 - 114
IEEE Robotics & Automation Magazine - June 2020 - 115
IEEE Robotics & Automation Magazine - June 2020 - 116
IEEE Robotics & Automation Magazine - June 2020 - 117
IEEE Robotics & Automation Magazine - June 2020 - 118
IEEE Robotics & Automation Magazine - June 2020 - 119
IEEE Robotics & Automation Magazine - June 2020 - 120
IEEE Robotics & Automation Magazine - June 2020 - 121
IEEE Robotics & Automation Magazine - June 2020 - 122
IEEE Robotics & Automation Magazine - June 2020 - 123
IEEE Robotics & Automation Magazine - June 2020 - 124
IEEE Robotics & Automation Magazine - June 2020 - 125
IEEE Robotics & Automation Magazine - June 2020 - 126
IEEE Robotics & Automation Magazine - June 2020 - 127
IEEE Robotics & Automation Magazine - June 2020 - 128
IEEE Robotics & Automation Magazine - June 2020 - 129
IEEE Robotics & Automation Magazine - June 2020 - 130
IEEE Robotics & Automation Magazine - June 2020 - 131
IEEE Robotics & Automation Magazine - June 2020 - 132
IEEE Robotics & Automation Magazine - June 2020 - 133
IEEE Robotics & Automation Magazine - June 2020 - 134
IEEE Robotics & Automation Magazine - June 2020 - 135
IEEE Robotics & Automation Magazine - June 2020 - 136
IEEE Robotics & Automation Magazine - June 2020 - 137
IEEE Robotics & Automation Magazine - June 2020 - 138
IEEE Robotics & Automation Magazine - June 2020 - 139
IEEE Robotics & Automation Magazine - June 2020 - 140
IEEE Robotics & Automation Magazine - June 2020 - 141
IEEE Robotics & Automation Magazine - June 2020 - 142
IEEE Robotics & Automation Magazine - June 2020 - 143
IEEE Robotics & Automation Magazine - June 2020 - 144
IEEE Robotics & Automation Magazine - June 2020 - 145
IEEE Robotics & Automation Magazine - June 2020 - 146
IEEE Robotics & Automation Magazine - June 2020 - 147
IEEE Robotics & Automation Magazine - June 2020 - 148
IEEE Robotics & Automation Magazine - June 2020 - 149
IEEE Robotics & Automation Magazine - June 2020 - 150
IEEE Robotics & Automation Magazine - June 2020 - 151
IEEE Robotics & Automation Magazine - June 2020 - 152
IEEE Robotics & Automation Magazine - June 2020 - 153
IEEE Robotics & Automation Magazine - June 2020 - 154
IEEE Robotics & Automation Magazine - June 2020 - 155
IEEE Robotics & Automation Magazine - June 2020 - 156
IEEE Robotics & Automation Magazine - June 2020 - 157
IEEE Robotics & Automation Magazine - June 2020 - 158
IEEE Robotics & Automation Magazine - June 2020 - 159
IEEE Robotics & Automation Magazine - June 2020 - 160
IEEE Robotics & Automation Magazine - June 2020 - 161
IEEE Robotics & Automation Magazine - June 2020 - 162
IEEE Robotics & Automation Magazine - June 2020 - 163
IEEE Robotics & Automation Magazine - June 2020 - 164
IEEE Robotics & Automation Magazine - June 2020 - 165
IEEE Robotics & Automation Magazine - June 2020 - 166
IEEE Robotics & Automation Magazine - June 2020 - 167
IEEE Robotics & Automation Magazine - June 2020 - 168
IEEE Robotics & Automation Magazine - June 2020 - 169
IEEE Robotics & Automation Magazine - June 2020 - 170
IEEE Robotics & Automation Magazine - June 2020 - 171
IEEE Robotics & Automation Magazine - June 2020 - 172
IEEE Robotics & Automation Magazine - June 2020 - 173
IEEE Robotics & Automation Magazine - June 2020 - 174
IEEE Robotics & Automation Magazine - June 2020 - 175
IEEE Robotics & Automation Magazine - June 2020 - 176
IEEE Robotics & Automation Magazine - June 2020 - 177
IEEE Robotics & Automation Magazine - June 2020 - 178
IEEE Robotics & Automation Magazine - June 2020 - 179
IEEE Robotics & Automation Magazine - June 2020 - 180
IEEE Robotics & Automation Magazine - June 2020 - 181
IEEE Robotics & Automation Magazine - June 2020 - 182
IEEE Robotics & Automation Magazine - June 2020 - 183
IEEE Robotics & Automation Magazine - June 2020 - 184
IEEE Robotics & Automation Magazine - June 2020 - Cover3
IEEE Robotics & Automation Magazine - June 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com