IEEE Robotics & Automation Magazine - June 2020 - 79

feedback capabilities similar to a human physiotherapist.
These desired features are usually achieved at the expense of
other important requirements, such as transparency and
backdrivability, degrading the overall human-machine
interaction experience.
We present an active gravity compensation method that
can significantly improve the performance of mechatronic
systems used for rehabilitation and many other domains of
robotic applications. Traditional algorithms to obtain active
gravity compensation usually require the system's static equilibrium equations. However, for complex mechatronic configurations, solving these equations is not straightforward. The
use of machine learning (ML) methods can achieve gravity
compensation without the need to solve the equilibrium
equations. To validate the performance of the proposed
approach, the HomeRehab robotic rehabilitation system is
used to obtain experimental results.
Robotic Rehabilitation
Stroke is currently the second most frequent cause of death,
after coronary artery disease, and its prevalence is increasing
at an alarming rate. Hemiparesis resulting in movement disabilities is the most common outcome of stroke. Fortunately,
rehabilitation can help hemiparetic patients learn new ways of
using and moving their weak arms and legs. It is also possible
with immediate therapy that people who suffer from hemiparesis may eventually regain movement. Although there are
several approaches, extensive task-specific repetitive movement is one of the safest and most effective methods to regain
the lost mobility of the affected limbs. This therapy requires
continual medical care and intensive rehabilitation, which
often necessitates one-on-one manual interaction with the
physical therapist.
Robotic rehabilitation is an emerging field that enables a
patient to perform exercises with the assistance of a robotic
device [1]. These systems can be used to provide therapy
(even at the patient's home) for a long period of time, irrespective of skills and fatigue, compared to manual therapy.
Besides the cost-effective aspect, robotic devices introduce
higher accuracy and repeatability in performing exercises.
Precise measurements of quantitative parameters by means of
robotic instrumentation also improve the objective monitoring of patients' recovery. Furthermore, rehabilitation robots
can be combined with virtual-reality environments to engage
and push patients to keep training, as the patients' motivation
and cognitive involvement have a great impact on the outcome of rehabilitation [2].
Currently, several devices on the market provide a robotic
solution to these repetitive movements, and these have been
installed in many hospitals around the world. Some examples are InMotion ARM (Bionik Labs), ReoGo (Motorika),
and Armeo Power (Hocoma). For a successful rehabilitation
system, the robot must be able to deliver physical forces similar to manual therapy. Mechanically, this implies developing
robots with significant workspace and force feedback features. Such systems have, in turn, the drawback of being

bulky and heavy, degrading the final interaction experience
with the patient. Among the different technical challenges of
these systems, gravity compensation is key for high rehabilitation performance.
In previous work [3], we developed the HomeRehab
robotic system, which is capable of restoring haptic effects at
its handle for upper limb rehabilitation (Figure 1). This mechanism has three degrees of freedom (3 DoF) and consists of a
pantograph that pivots on a horizontal axis, but it is not perfectly gravity-balanced. Thus, an active compensation strategy
is needed. In this article, gravity compensation means removing the gravity components of the mechanical device to make
it transparent or imperceptible to the patient, in the sense
that, during the rehabilitation exercises, the patient has to
overcome only the weight of his or her own arm.
Related Work
Gravity compensation is a basic requirement in robotics, and
more specifically in haptics, to ensure system usability and
transparency. It is also a key specification of mechatronic
rehabilitation devices [4], so that users can move their arms
freely without feeling (and holding) the weight of the robot
during the therapy. In addition, friction may be a limiting factor of these mechanisms, and some strategies try to compensate for both the unknown static friction and the gravity
forces [5]. A comparison of different algorithms for gravity
compensation in parallel mechanisms can be found in [6].
In the field of rehabilitation devices, several gravity compensation strategies have been applied that are also valid for
any mechatronic system. In some cases, the mechanism is
designed to be gravity balanced, that is, to be in neutral equilibrium without requiring joint actuator torques [7]. This feature can also be achieved by adding a passive mechanism to
the robotic arm [8]. These solutions are intrinsically safe, but
they are difficult to design.
Analytical Approaches
Analytical active compensation methods balance the system,
acting on each joint according to a gravity model of the

Figure 1. The HomeRehab robotic rehabilitation system developed
at Ceit, a member of the Basque Research and Technology
Alliance (BRTA) and associated with Tecnun, Universidad de
Navarra, School of Engineering at San Sebastián.

JUNE 2020

*

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

79



IEEE Robotics & Automation Magazine - June 2020

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2020

Contents
IEEE Robotics & Automation Magazine - June 2020 - Cover1
IEEE Robotics & Automation Magazine - June 2020 - Cover2
IEEE Robotics & Automation Magazine - June 2020 - Contents
IEEE Robotics & Automation Magazine - June 2020 - 2
IEEE Robotics & Automation Magazine - June 2020 - 3
IEEE Robotics & Automation Magazine - June 2020 - 4
IEEE Robotics & Automation Magazine - June 2020 - 5
IEEE Robotics & Automation Magazine - June 2020 - 6
IEEE Robotics & Automation Magazine - June 2020 - 7
IEEE Robotics & Automation Magazine - June 2020 - 8
IEEE Robotics & Automation Magazine - June 2020 - 9
IEEE Robotics & Automation Magazine - June 2020 - 10
IEEE Robotics & Automation Magazine - June 2020 - 11
IEEE Robotics & Automation Magazine - June 2020 - 12
IEEE Robotics & Automation Magazine - June 2020 - 13
IEEE Robotics & Automation Magazine - June 2020 - 14
IEEE Robotics & Automation Magazine - June 2020 - 15
IEEE Robotics & Automation Magazine - June 2020 - 16
IEEE Robotics & Automation Magazine - June 2020 - 17
IEEE Robotics & Automation Magazine - June 2020 - 18
IEEE Robotics & Automation Magazine - June 2020 - 19
IEEE Robotics & Automation Magazine - June 2020 - 20
IEEE Robotics & Automation Magazine - June 2020 - 21
IEEE Robotics & Automation Magazine - June 2020 - 22
IEEE Robotics & Automation Magazine - June 2020 - 23
IEEE Robotics & Automation Magazine - June 2020 - 24
IEEE Robotics & Automation Magazine - June 2020 - 25
IEEE Robotics & Automation Magazine - June 2020 - 26
IEEE Robotics & Automation Magazine - June 2020 - 27
IEEE Robotics & Automation Magazine - June 2020 - 28
IEEE Robotics & Automation Magazine - June 2020 - 29
IEEE Robotics & Automation Magazine - June 2020 - 30
IEEE Robotics & Automation Magazine - June 2020 - 31
IEEE Robotics & Automation Magazine - June 2020 - 32
IEEE Robotics & Automation Magazine - June 2020 - 33
IEEE Robotics & Automation Magazine - June 2020 - 34
IEEE Robotics & Automation Magazine - June 2020 - 35
IEEE Robotics & Automation Magazine - June 2020 - 36
IEEE Robotics & Automation Magazine - June 2020 - 37
IEEE Robotics & Automation Magazine - June 2020 - 38
IEEE Robotics & Automation Magazine - June 2020 - 39
IEEE Robotics & Automation Magazine - June 2020 - 40
IEEE Robotics & Automation Magazine - June 2020 - 41
IEEE Robotics & Automation Magazine - June 2020 - 42
IEEE Robotics & Automation Magazine - June 2020 - 43
IEEE Robotics & Automation Magazine - June 2020 - 44
IEEE Robotics & Automation Magazine - June 2020 - 45
IEEE Robotics & Automation Magazine - June 2020 - 46
IEEE Robotics & Automation Magazine - June 2020 - 47
IEEE Robotics & Automation Magazine - June 2020 - 48
IEEE Robotics & Automation Magazine - June 2020 - 49
IEEE Robotics & Automation Magazine - June 2020 - 50
IEEE Robotics & Automation Magazine - June 2020 - 51
IEEE Robotics & Automation Magazine - June 2020 - 52
IEEE Robotics & Automation Magazine - June 2020 - 53
IEEE Robotics & Automation Magazine - June 2020 - 54
IEEE Robotics & Automation Magazine - June 2020 - 55
IEEE Robotics & Automation Magazine - June 2020 - 56
IEEE Robotics & Automation Magazine - June 2020 - 57
IEEE Robotics & Automation Magazine - June 2020 - 58
IEEE Robotics & Automation Magazine - June 2020 - 59
IEEE Robotics & Automation Magazine - June 2020 - 60
IEEE Robotics & Automation Magazine - June 2020 - 61
IEEE Robotics & Automation Magazine - June 2020 - 62
IEEE Robotics & Automation Magazine - June 2020 - 63
IEEE Robotics & Automation Magazine - June 2020 - 64
IEEE Robotics & Automation Magazine - June 2020 - 65
IEEE Robotics & Automation Magazine - June 2020 - 66
IEEE Robotics & Automation Magazine - June 2020 - 67
IEEE Robotics & Automation Magazine - June 2020 - 68
IEEE Robotics & Automation Magazine - June 2020 - 69
IEEE Robotics & Automation Magazine - June 2020 - 70
IEEE Robotics & Automation Magazine - June 2020 - 71
IEEE Robotics & Automation Magazine - June 2020 - 72
IEEE Robotics & Automation Magazine - June 2020 - 73
IEEE Robotics & Automation Magazine - June 2020 - 74
IEEE Robotics & Automation Magazine - June 2020 - 75
IEEE Robotics & Automation Magazine - June 2020 - 76
IEEE Robotics & Automation Magazine - June 2020 - 77
IEEE Robotics & Automation Magazine - June 2020 - 78
IEEE Robotics & Automation Magazine - June 2020 - 79
IEEE Robotics & Automation Magazine - June 2020 - 80
IEEE Robotics & Automation Magazine - June 2020 - 81
IEEE Robotics & Automation Magazine - June 2020 - 82
IEEE Robotics & Automation Magazine - June 2020 - 83
IEEE Robotics & Automation Magazine - June 2020 - 84
IEEE Robotics & Automation Magazine - June 2020 - 85
IEEE Robotics & Automation Magazine - June 2020 - 86
IEEE Robotics & Automation Magazine - June 2020 - 87
IEEE Robotics & Automation Magazine - June 2020 - 88
IEEE Robotics & Automation Magazine - June 2020 - 89
IEEE Robotics & Automation Magazine - June 2020 - 90
IEEE Robotics & Automation Magazine - June 2020 - 91
IEEE Robotics & Automation Magazine - June 2020 - 92
IEEE Robotics & Automation Magazine - June 2020 - 93
IEEE Robotics & Automation Magazine - June 2020 - 94
IEEE Robotics & Automation Magazine - June 2020 - 95
IEEE Robotics & Automation Magazine - June 2020 - 96
IEEE Robotics & Automation Magazine - June 2020 - 97
IEEE Robotics & Automation Magazine - June 2020 - 98
IEEE Robotics & Automation Magazine - June 2020 - 99
IEEE Robotics & Automation Magazine - June 2020 - 100
IEEE Robotics & Automation Magazine - June 2020 - 101
IEEE Robotics & Automation Magazine - June 2020 - 102
IEEE Robotics & Automation Magazine - June 2020 - 103
IEEE Robotics & Automation Magazine - June 2020 - 104
IEEE Robotics & Automation Magazine - June 2020 - 105
IEEE Robotics & Automation Magazine - June 2020 - 106
IEEE Robotics & Automation Magazine - June 2020 - 107
IEEE Robotics & Automation Magazine - June 2020 - 108
IEEE Robotics & Automation Magazine - June 2020 - 109
IEEE Robotics & Automation Magazine - June 2020 - 110
IEEE Robotics & Automation Magazine - June 2020 - 111
IEEE Robotics & Automation Magazine - June 2020 - 112
IEEE Robotics & Automation Magazine - June 2020 - 113
IEEE Robotics & Automation Magazine - June 2020 - 114
IEEE Robotics & Automation Magazine - June 2020 - 115
IEEE Robotics & Automation Magazine - June 2020 - 116
IEEE Robotics & Automation Magazine - June 2020 - 117
IEEE Robotics & Automation Magazine - June 2020 - 118
IEEE Robotics & Automation Magazine - June 2020 - 119
IEEE Robotics & Automation Magazine - June 2020 - 120
IEEE Robotics & Automation Magazine - June 2020 - 121
IEEE Robotics & Automation Magazine - June 2020 - 122
IEEE Robotics & Automation Magazine - June 2020 - 123
IEEE Robotics & Automation Magazine - June 2020 - 124
IEEE Robotics & Automation Magazine - June 2020 - 125
IEEE Robotics & Automation Magazine - June 2020 - 126
IEEE Robotics & Automation Magazine - June 2020 - 127
IEEE Robotics & Automation Magazine - June 2020 - 128
IEEE Robotics & Automation Magazine - June 2020 - 129
IEEE Robotics & Automation Magazine - June 2020 - 130
IEEE Robotics & Automation Magazine - June 2020 - 131
IEEE Robotics & Automation Magazine - June 2020 - 132
IEEE Robotics & Automation Magazine - June 2020 - 133
IEEE Robotics & Automation Magazine - June 2020 - 134
IEEE Robotics & Automation Magazine - June 2020 - 135
IEEE Robotics & Automation Magazine - June 2020 - 136
IEEE Robotics & Automation Magazine - June 2020 - 137
IEEE Robotics & Automation Magazine - June 2020 - 138
IEEE Robotics & Automation Magazine - June 2020 - 139
IEEE Robotics & Automation Magazine - June 2020 - 140
IEEE Robotics & Automation Magazine - June 2020 - 141
IEEE Robotics & Automation Magazine - June 2020 - 142
IEEE Robotics & Automation Magazine - June 2020 - 143
IEEE Robotics & Automation Magazine - June 2020 - 144
IEEE Robotics & Automation Magazine - June 2020 - 145
IEEE Robotics & Automation Magazine - June 2020 - 146
IEEE Robotics & Automation Magazine - June 2020 - 147
IEEE Robotics & Automation Magazine - June 2020 - 148
IEEE Robotics & Automation Magazine - June 2020 - 149
IEEE Robotics & Automation Magazine - June 2020 - 150
IEEE Robotics & Automation Magazine - June 2020 - 151
IEEE Robotics & Automation Magazine - June 2020 - 152
IEEE Robotics & Automation Magazine - June 2020 - 153
IEEE Robotics & Automation Magazine - June 2020 - 154
IEEE Robotics & Automation Magazine - June 2020 - 155
IEEE Robotics & Automation Magazine - June 2020 - 156
IEEE Robotics & Automation Magazine - June 2020 - 157
IEEE Robotics & Automation Magazine - June 2020 - 158
IEEE Robotics & Automation Magazine - June 2020 - 159
IEEE Robotics & Automation Magazine - June 2020 - 160
IEEE Robotics & Automation Magazine - June 2020 - 161
IEEE Robotics & Automation Magazine - June 2020 - 162
IEEE Robotics & Automation Magazine - June 2020 - 163
IEEE Robotics & Automation Magazine - June 2020 - 164
IEEE Robotics & Automation Magazine - June 2020 - 165
IEEE Robotics & Automation Magazine - June 2020 - 166
IEEE Robotics & Automation Magazine - June 2020 - 167
IEEE Robotics & Automation Magazine - June 2020 - 168
IEEE Robotics & Automation Magazine - June 2020 - 169
IEEE Robotics & Automation Magazine - June 2020 - 170
IEEE Robotics & Automation Magazine - June 2020 - 171
IEEE Robotics & Automation Magazine - June 2020 - 172
IEEE Robotics & Automation Magazine - June 2020 - 173
IEEE Robotics & Automation Magazine - June 2020 - 174
IEEE Robotics & Automation Magazine - June 2020 - 175
IEEE Robotics & Automation Magazine - June 2020 - 176
IEEE Robotics & Automation Magazine - June 2020 - 177
IEEE Robotics & Automation Magazine - June 2020 - 178
IEEE Robotics & Automation Magazine - June 2020 - 179
IEEE Robotics & Automation Magazine - June 2020 - 180
IEEE Robotics & Automation Magazine - June 2020 - 181
IEEE Robotics & Automation Magazine - June 2020 - 182
IEEE Robotics & Automation Magazine - June 2020 - 183
IEEE Robotics & Automation Magazine - June 2020 - 184
IEEE Robotics & Automation Magazine - June 2020 - Cover3
IEEE Robotics & Automation Magazine - June 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com