IEEE Robotics & Automation Magazine - June 2021 - 22

The results indicate the possibility of effectively shifting
the stable stiffness range so that the system meets the stiffness
requirements throughout the given task while minimizing the
overall stiffness. By being able to render various controller
stiffnesses, the manipulator can handle a wider range of tasks
that require different amounts of stiffness. PC is especially
important when the robot moves in unstructured environments
or manipulates objects with unknown kinematics and
dynamics, as passive compliance aids robustness in unforeseen
situations.
In addition to stiffness reduction, we have verified the
relaxed torque requirements by using the proposed structure
as compared to the previous approach. The torque requirements
are computed through the calculation of restoring the
joint torques based on the optimized Kpc
from (3). From the
potential energy stored in the springs, we have seen the possibility
of energy reduction, which could be verified through
further investigative experiments with batteries.
The benefits of implementing tendon-driven series elastic
actuators include a weight separation between the actuators
and manipulators and thus the usage of low-capacity motors
that drive the low-inertia manipulators. Additionally, for high
frequencies, the overall impedance of the system reduces to
that of the physical springs, making the system a zero-delay
low-pass filter. Introduction of the proposed structure with
NPC and CTR opens up a new possibility of reducing the
motor capacity and dropping the weight, size, and cost of the
motors even further. This can be advantageous in the field of
prostheses and exoskeletons. Furthermore, in such remote
systems, where battery life is crucial, energy efficiency is an
important factor to consider.
For future work, we hope to extend the current study by
●
conducting experiments in mobile environments, where the
battery lifespan is crucial, and seeking the feasibility and efficacy
of the proposed structure in terms of robustness and
energy efficiency
●
extending the optimization methodology to include other
design parameters, such as link lengths, actuation pulley
radii, routing strategies, and so on
●
further investigating the optimization of coupled PC to
check the feasibility of fully nonlinear and fully coupled
PC components.
References
[1] Y. T. Lee, H. R. Choi, W. K. Chung, and Y. Youm, " Stiffness control of
a coupled tendon-driven robot hand, " IEEE Control Syst. Mag., vol. 14,
no. 5, pp. 10-19, 1994.
[2] J. Pratt, B. Krupp, and C. Morse, " Series elastic actuators for high
fidelity force control, " Ind. Robot., vol. 29, no. 3, pp. 234-241, 2002. doi:
10.1108/01439910210425522.
[3] C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, " On the passivity-based
impedance control of flexible joint robots, " IEEE Trans.
Robot., vol. 24, no. 2, pp. 416-429, 2008. doi: 10.1109/TRO.2008.915438.
[4] N. L. Tagliamonte and D. Accoto, " Passivity constraints for the impedance
control of series elastic actuators, " Proc. Inst. Mech. Eng. I J. Syst. Control
Eng., vol. 228, no. 3, pp. 138-153, 2014. doi: 10.1177/0959651813511615.
22 * IEEE ROBOTICS & AUTOMATION MAGAZINE * JUNE 2021
[5] G. A. Pratt and M. M. Williamson, " Series elastic actuators, " in Proc.
IEEE/RSJ Int. Conf. Intell. Robots and Syst., 1995, pp. 399-406. doi:
10.1109/IROS.1995.525827.
[6] M. Zinn, O. Khatib, and B. Roth, " A new actuation approach for
human friendly robot design, " in Proc. IEEE Int. Conf. Robot. Automat.,
2004, pp. 249-254. doi: 10.1109/ROBOT.2004.1307159.
[7] J. Morrell and J. Salisbury, " Parallel-coupled micro-macro actuators, "
Int. J. Robot. Res., vol. 17, no. 7, pp. 773-791, 1998. doi: 10.1177/
027836499801700707.
[8] R. Ozawa, K. Hashirii, and H. Kobayashi, " Design and control of underactuated
tendon-driven mechanisms, " in Proc. IEEE Int. Conf. Robot.
Automat., 2009, pp. 1522-1527. doi: 10.1109/ROBOT.2009.5152222.
[9] T. Treratanakulwong, H. Kaminaga, and Y. Nakamura, " Low-friction
tendon-driven robot hand with carpal tunnel mechanism in the palm by
optimal 3D allocation of pulleys, " in Proc. IEEE Int. Conf. Robot.
Automat., 2014, pp. 6739-6744. doi: 10.1109/ICRA.2014.6907854.
[10] M. Uemura, H. Goya, and S. Kawamura, " Motion control with stiffness
adaptation for torque minimization in multijoint robots, " IEEE Trans.
Robot., vol. 30, no. 2, pp. 352-364, 2013. doi: 10.1109/TRO.2013.2283927.
[11] A. D. Deshpande, N. Gialias, and Y. Matsuoka, " Contributions of
intrinsic visco-elastic torques during planar index finger and wrist
movements, " IEEE Trans. Biomed. Eng., vol. 59, no. 2, pp. 586-594, 2012.
doi: 10.1109/TBME.2011.2178240.
[12] P. Rao and A. D. Deshpande, " Analyzing and improving Cartesian
stiffness control stability of series elastic tendon-driven robotic
hands, " in Proc. IEEE Int. Conf. Robot. Automat., 2018, pp. 5415-5420.
doi: 10.1109/ICRA.2018.8460956.
[13] S. F. Chen and I. Kao, " Conservative congruence transformation
for joint and cartesian stiffness matrices of robotic hands and fingers, "
Int. J. Robot. Res., vol. 19, no. 9, pp. 835-847, 2000. doi: 10.1177/
02783640022067201.
[14] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, " An interior
algorithm for nonlinear optimization that combines line search and
trust region steps, " Math. Program., vol. 107, no. 3, pp. 391-408, 2006.
doi: 10.1007/s10107-004-0560-5.
[15] B. Kim and A. D. Deshpande, " Design of nonlinear rotational stiffness
using a noncircular pulley-spring mechanism, " ASME. J. Mech.
Robot., vol. 6, no. 4, p. 041009, 2014. doi: 10.1115/1.4027513.
[16] Y. L. Yu and C. C. Lan, " Design of a miniature series elastic actuator
for bilateral teleoperations requiring accurate torque sensing and control, "
IEEE Robot. Automat. Lett., vol. 4, no. 2, pp. 500-507, 2019. doi:
10.1109/LRA.2019.2891287.
[17] W. Townsend and J. Salisbury, " The effect of coulomb friction and
stiction on force control, " in Proc. IEEE Int. Conf. Robot. Automat.,
1987, pp. 883-889. doi: 10.1109/ROBOT.1987.1087936.
[18] " Maxon Motors online catalog, " Maxon Group, Sachseln, Switzerland.
[Online]. Available: https://www.maxongroup.com/maxon/view/catalog/
Mincheol Kim, Department of Mechanical Engineering, University
of Texas at Austin, Austin, Texas, 78712, USA. Email:
mincheol@utexas.edu.
Ashish D. Deshpande, Department of Mechanical Engineering,
University of Texas at Austin, Austin, Texas, 78712, USA.
Email: ashish@austin.utexas.edu.
https://www.maxongroup.com/maxon/view/catalog/

IEEE Robotics & Automation Magazine - June 2021

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2021

Contents
IEEE Robotics & Automation Magazine - June 2021 - Cover1
IEEE Robotics & Automation Magazine - June 2021 - Cover2
IEEE Robotics & Automation Magazine - June 2021 - Contents
IEEE Robotics & Automation Magazine - June 2021 - 2
IEEE Robotics & Automation Magazine - June 2021 - 3
IEEE Robotics & Automation Magazine - June 2021 - 4
IEEE Robotics & Automation Magazine - June 2021 - 5
IEEE Robotics & Automation Magazine - June 2021 - 6
IEEE Robotics & Automation Magazine - June 2021 - 7
IEEE Robotics & Automation Magazine - June 2021 - 8
IEEE Robotics & Automation Magazine - June 2021 - 9
IEEE Robotics & Automation Magazine - June 2021 - 10
IEEE Robotics & Automation Magazine - June 2021 - 11
IEEE Robotics & Automation Magazine - June 2021 - 12
IEEE Robotics & Automation Magazine - June 2021 - 13
IEEE Robotics & Automation Magazine - June 2021 - 14
IEEE Robotics & Automation Magazine - June 2021 - 15
IEEE Robotics & Automation Magazine - June 2021 - 16
IEEE Robotics & Automation Magazine - June 2021 - 17
IEEE Robotics & Automation Magazine - June 2021 - 18
IEEE Robotics & Automation Magazine - June 2021 - 19
IEEE Robotics & Automation Magazine - June 2021 - 20
IEEE Robotics & Automation Magazine - June 2021 - 21
IEEE Robotics & Automation Magazine - June 2021 - 22
IEEE Robotics & Automation Magazine - June 2021 - 23
IEEE Robotics & Automation Magazine - June 2021 - 24
IEEE Robotics & Automation Magazine - June 2021 - 25
IEEE Robotics & Automation Magazine - June 2021 - 26
IEEE Robotics & Automation Magazine - June 2021 - 27
IEEE Robotics & Automation Magazine - June 2021 - 28
IEEE Robotics & Automation Magazine - June 2021 - 29
IEEE Robotics & Automation Magazine - June 2021 - 30
IEEE Robotics & Automation Magazine - June 2021 - 31
IEEE Robotics & Automation Magazine - June 2021 - 32
IEEE Robotics & Automation Magazine - June 2021 - 33
IEEE Robotics & Automation Magazine - June 2021 - 34
IEEE Robotics & Automation Magazine - June 2021 - 35
IEEE Robotics & Automation Magazine - June 2021 - 36
IEEE Robotics & Automation Magazine - June 2021 - 37
IEEE Robotics & Automation Magazine - June 2021 - 38
IEEE Robotics & Automation Magazine - June 2021 - 39
IEEE Robotics & Automation Magazine - June 2021 - 40
IEEE Robotics & Automation Magazine - June 2021 - 41
IEEE Robotics & Automation Magazine - June 2021 - 42
IEEE Robotics & Automation Magazine - June 2021 - 43
IEEE Robotics & Automation Magazine - June 2021 - 44
IEEE Robotics & Automation Magazine - June 2021 - 45
IEEE Robotics & Automation Magazine - June 2021 - 46
IEEE Robotics & Automation Magazine - June 2021 - 47
IEEE Robotics & Automation Magazine - June 2021 - 48
IEEE Robotics & Automation Magazine - June 2021 - 49
IEEE Robotics & Automation Magazine - June 2021 - 50
IEEE Robotics & Automation Magazine - June 2021 - 51
IEEE Robotics & Automation Magazine - June 2021 - 52
IEEE Robotics & Automation Magazine - June 2021 - 53
IEEE Robotics & Automation Magazine - June 2021 - 54
IEEE Robotics & Automation Magazine - June 2021 - 55
IEEE Robotics & Automation Magazine - June 2021 - 56
IEEE Robotics & Automation Magazine - June 2021 - 57
IEEE Robotics & Automation Magazine - June 2021 - 58
IEEE Robotics & Automation Magazine - June 2021 - 59
IEEE Robotics & Automation Magazine - June 2021 - 60
IEEE Robotics & Automation Magazine - June 2021 - 61
IEEE Robotics & Automation Magazine - June 2021 - 62
IEEE Robotics & Automation Magazine - June 2021 - 63
IEEE Robotics & Automation Magazine - June 2021 - 64
IEEE Robotics & Automation Magazine - June 2021 - 65
IEEE Robotics & Automation Magazine - June 2021 - 66
IEEE Robotics & Automation Magazine - June 2021 - 67
IEEE Robotics & Automation Magazine - June 2021 - 68
IEEE Robotics & Automation Magazine - June 2021 - 69
IEEE Robotics & Automation Magazine - June 2021 - 70
IEEE Robotics & Automation Magazine - June 2021 - 71
IEEE Robotics & Automation Magazine - June 2021 - 72
IEEE Robotics & Automation Magazine - June 2021 - 73
IEEE Robotics & Automation Magazine - June 2021 - 74
IEEE Robotics & Automation Magazine - June 2021 - 75
IEEE Robotics & Automation Magazine - June 2021 - 76
IEEE Robotics & Automation Magazine - June 2021 - 77
IEEE Robotics & Automation Magazine - June 2021 - 78
IEEE Robotics & Automation Magazine - June 2021 - 79
IEEE Robotics & Automation Magazine - June 2021 - 80
IEEE Robotics & Automation Magazine - June 2021 - 81
IEEE Robotics & Automation Magazine - June 2021 - 82
IEEE Robotics & Automation Magazine - June 2021 - 83
IEEE Robotics & Automation Magazine - June 2021 - 84
IEEE Robotics & Automation Magazine - June 2021 - 85
IEEE Robotics & Automation Magazine - June 2021 - 86
IEEE Robotics & Automation Magazine - June 2021 - 87
IEEE Robotics & Automation Magazine - June 2021 - 88
IEEE Robotics & Automation Magazine - June 2021 - 89
IEEE Robotics & Automation Magazine - June 2021 - 90
IEEE Robotics & Automation Magazine - June 2021 - 91
IEEE Robotics & Automation Magazine - June 2021 - 92
IEEE Robotics & Automation Magazine - June 2021 - 93
IEEE Robotics & Automation Magazine - June 2021 - 94
IEEE Robotics & Automation Magazine - June 2021 - 95
IEEE Robotics & Automation Magazine - June 2021 - 96
IEEE Robotics & Automation Magazine - June 2021 - 97
IEEE Robotics & Automation Magazine - June 2021 - 98
IEEE Robotics & Automation Magazine - June 2021 - 99
IEEE Robotics & Automation Magazine - June 2021 - 100
IEEE Robotics & Automation Magazine - June 2021 - 101
IEEE Robotics & Automation Magazine - June 2021 - 102
IEEE Robotics & Automation Magazine - June 2021 - 103
IEEE Robotics & Automation Magazine - June 2021 - 104
IEEE Robotics & Automation Magazine - June 2021 - 105
IEEE Robotics & Automation Magazine - June 2021 - 106
IEEE Robotics & Automation Magazine - June 2021 - 107
IEEE Robotics & Automation Magazine - June 2021 - 108
IEEE Robotics & Automation Magazine - June 2021 - 109
IEEE Robotics & Automation Magazine - June 2021 - 110
IEEE Robotics & Automation Magazine - June 2021 - 111
IEEE Robotics & Automation Magazine - June 2021 - 112
IEEE Robotics & Automation Magazine - June 2021 - 113
IEEE Robotics & Automation Magazine - June 2021 - 114
IEEE Robotics & Automation Magazine - June 2021 - 115
IEEE Robotics & Automation Magazine - June 2021 - 116
IEEE Robotics & Automation Magazine - June 2021 - 117
IEEE Robotics & Automation Magazine - June 2021 - 118
IEEE Robotics & Automation Magazine - June 2021 - 119
IEEE Robotics & Automation Magazine - June 2021 - 120
IEEE Robotics & Automation Magazine - June 2021 - 121
IEEE Robotics & Automation Magazine - June 2021 - 122
IEEE Robotics & Automation Magazine - June 2021 - 123
IEEE Robotics & Automation Magazine - June 2021 - 124
IEEE Robotics & Automation Magazine - June 2021 - 125
IEEE Robotics & Automation Magazine - June 2021 - 126
IEEE Robotics & Automation Magazine - June 2021 - 127
IEEE Robotics & Automation Magazine - June 2021 - 128
IEEE Robotics & Automation Magazine - June 2021 - 129
IEEE Robotics & Automation Magazine - June 2021 - 130
IEEE Robotics & Automation Magazine - June 2021 - 131
IEEE Robotics & Automation Magazine - June 2021 - 132
IEEE Robotics & Automation Magazine - June 2021 - 133
IEEE Robotics & Automation Magazine - June 2021 - 134
IEEE Robotics & Automation Magazine - June 2021 - 135
IEEE Robotics & Automation Magazine - June 2021 - 136
IEEE Robotics & Automation Magazine - June 2021 - 137
IEEE Robotics & Automation Magazine - June 2021 - 138
IEEE Robotics & Automation Magazine - June 2021 - 139
IEEE Robotics & Automation Magazine - June 2021 - 140
IEEE Robotics & Automation Magazine - June 2021 - Cover3
IEEE Robotics & Automation Magazine - June 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com