IEEE Robotics & Automation Magazine - June 2023 - 56

Based on the experimental results, the fingertip design
approach needs to be extended to enable the manipulation
of complex objects and mechanisms, such as mechanical
subsystems.
Moreover, the current setup is limited to grasping objects
of smaller size at their lateral surface. Advancing the testbed to
handle finger bases of different sizes and morphology, adapted
for different kinds of grasp patterns, could improve the spectrum
of executable manipulation scenarios significantly.
Although our setup is optimized to use a specialized
fingertip for a designated object to increase manipulation
performance, an automatic design approach optimizing a
single finger surface for multiple objects could increase the
versatility of a designated finger-pair library of limited size.
To further improve this versatility and the adaptation time, the
manipulation objects and task scenes could be automatically
scanned to derive the geometrical object information independent
of the CAD data. Also, the relative position and orientation
between the gripper finger and the manipulation object
could be extracted from these recordings. In that context, a
manual demonstration of the desired assembly operation with
the corresponding objects could be used to automatically
derive and parameterize the robot motion and manipulation
skills required to conduct the desired tasks.
To further explore the potential combination of our work
with machine learning-based design approaches, an exhaustive
object dataset must be generated and used to compare different
machine learning methods via a final experimental evaluation.
ACKNOWLEDGMENT
The authors would like to thank Diego Hidalgo and Samuel
Schneider for their fruitful discussions. This work was supported
by the German Research Foundation (DFG) as part of
Germany's Excellence Strategy, EXC 2050/1, Project ID
390696704 " Centre for Tactile Internet with Human-in-theLoop "
of Technical University Dresden. The authors acknowledge
funding of KI.FABRIK (Artificial Intelligence Factory,
Bavaria) by the Bavarian Ministry of Economic Affairs,
Regional Development, and Energy, Phase 1 Infrastruktur and
Forschungs und Entwicklung (Grant DIK0249), as well as
funding of Lighthouse Initiative Geriatronics by LongLeif
GaPa gGmbH. Please note that S. Haddadin has a potential
conflict of interest as a shareholder of Franka Emika GmbH.
AUTHORS
Johannes Ringwald, Chair of Robotics and Systems Intelligence
and Munich Institute of Robotics and Machine Intelligence,
Technical University Munich, D-80797 Munich, Germany.
Email: johannes.ringwald@tum.de.
Shaochuan Zong, Chair of Robotics and Systems
Intelligence and Munich Institute of Robotics and Machine
Intelligence, Technical University Munich, D-80797 Munich,
Germany. Email: shaochuan.zong@tum.de.
Abdalla Swikir, Chair of Robotics and Systems
Intelligence and Munich Institute of Robotics and Machine
Intelligence, Technical University Munich, D-80797 Munich,
56 IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 2023
Germany; Department of Electrical and Electronic Engineering,
Omar Al-Mukhtar University, QP56 Albaida, Libya; and Centre
for Tactile Internet with Human-in-the-Loop, Technical
University Dresden, 01062 Dresden, Germany. Email: abdalla.
swikir@tum.de.
Sami Haddadin, Chair of Robotics and Systems
Intelligence and Munich Institute of Robotics and Machine
Intelligence, Technical University Munich, D-80797 Munich,
Germany; and Centre for Tactile Internet with Human-in-theLoop,
Technical University Dresden, 01062 Dresden, Germany.
Email: haddadin@tum.de.
REFERENCES
[1] H. Ha, S. Agrawal, and S. Song, " Fit2Form: 3D generative model for robot
gripper form design, " 2020, arXiv:2011.06498.
[2] G. Causey, " Guidelines for the design of robotic gripping systems, " Assem.
Automat., vol. 23, no. 1, pp. 18-28, Mar. 2003, doi: 10.1108/01445150310460033.
[3] M. Honarpardaz et al., " Generic automated multi-function finger design, " IOP
Conf. Ser., Mater. Sci. Eng., vol. 157, no. 1, Nov. 2016, Art. no. 012015, doi:
10.1088/1757-899X/157/1/012015.
[4] M. Honarpardaz, M. Tarkian, J. Ölvander, and X. Feng, " Finger design automation
for industrial robot grippers: A review, " Robot. Auton. Syst., vol. 87, pp.
104-119, Jan. 2017, doi: 10.1016/j.robot.2016.10.003.
[5] M. Honarpardaz, J. Ölvander, and M. Tarkian, " Fast finger design automation
for industrial robots, " Robot. Auton. Syst., vol. 113, pp. 120-131, Mar. 2019, doi:
10.1016/j.robot.2018.12.011.
[6] H. Song, M. Y. Wang, and K. Hang, " Fingertip surface optimization for robust
grasping on contact primitives, " IEEE Robot. Autom. Lett., vol. 3, no. 2, pp. 742-
749, Apr. 2018, doi: 10.1109/LRA.2018.2789842.
[7] V. Velasco and W. S. Newman, " Computer-assisted gripper and fixture customization
using rapid-prototyping technology, " in Proc. IEEE Int. Conf. Robot.
Automat. (Cat. No. 98CH36146), 1998, vol. 4, pp. 3658-3664, doi: 10.1109/
ROBOT.1998.681393.
[8] L. Balan and G. M. Bone, " Automated gripper jaw design and grasp planning
for sets of 3D objects, " J. Robot. Syst., vol. 20, no. 3, pp. 147-162, Mar. 2003, doi:
10.1002/rob.10076.
[9] P. Dhakal, " Design of automatic tool changer for universal collaborative robot, "
Ph.D. thesis, HAMK Häme Univ. of Appl. Sci., Hämeenlinna, Finland, 2019.
[10] M. Babcinschi, " Automatic tool changer on collaborative robots, " Ph.D. dissertation,
Univ. de Coimbra, Coimbra, Portugal, 2018.
[11] A. Pettinger, C. Dimoush, and M. W. Pryor, " Passive tool changer development
for an elastic and compliant manipulator, " in Proc. IEEE 15th Int. Conf. Automat.
Sci. Eng. (CASE), 2019, pp. 1200-1205, doi: 10.1109/COASE.2019.8843255.
[12] R. Berenstein, A. Wallach, P. E. Moudio, P. Cuellar, and K. Goldberg, " An
open-access passive modular tool changing system for mobile manipulation
robots, " in Proc. IEEE 14th Int. Conf. Automat. Sci. Eng. (CASE), 2018, pp. 592-
598, doi: 10.1109/COASE.2018.8560398.
[13] P. J. Leitão et al., " Development and simulation of an automatic tool changer for
an ABB robot, " Ph.D. dissertation, Fac. of Eng., Univ. of Porto, Porto, Portugal, 2019.
[14] D. Gyimothy and A. Toth, " Experimental evaluation of a novel automatic service
robot tool changer, " in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron.
(AIM), 2011, pp. 1046-1051, doi: 10.1109/AIM.2011.6027122.
[15] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, " Haptic identification
of objects using a modular soft robotic gripper, " in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), 2015, vol. 4, pp. 1698-1705, doi: 10.1109/IROS.2015.7353596.
[16] C. Clévy, A. Hubert, J. Agnus, and N. Chaillet, " A micromanipulation cell
including a tool changer, " J. Micromechanic Microengineering, vol. 15, no. 10,
Sep. 2005, Art. no. S292, doi: 10.1088/0960-1317/15/10/S07.
[17] J. Ringwald et al., " Towards task-specific modular gripper fingers: Automatic
production of fingertip mechanics, " IEEE Robot. Autom. Lett., vol. 8, no. 3, pp.
1866-1873, Mar. 2023, doi: 10.1109/LRA.2023.3241757.
[18] P. So, J. Wittmann, P. Ruhkamp, A. Sarabakha, and S. Haddadin, " Towards
remote robotic competitions: An internet-connected task board and dashboard, "
2022, arXiv:2201.09565.
[19] G. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A
Practical Guide. Amsterdam, The Netherlands: Elsevier, 2014.
[20] J. Ringwald, S. Zong, A. Swikir, and S. Haddadin, " Experimental results of
manual and auto-designed fingertips, " Technische Universität München, Munich,
Germany, 2023. [Online]. Available: https://mediatum.ub.tum.de/1703095
http://dx.doi.org/10.1108/01445150310460033 http://dx.doi.org/10.1088/1757-899X/157/1/012015 http://dx.doi.org/10.1016/j.robot.2018.12.011 http://dx.doi.org/10.1109/LRA.2018.2789842 http://dx.doi.org/10.1109/ROBOT.1998.681393 http://dx.doi.org/10.1109/ROBOT.1998.681393 http://dx.doi.org/10.1002/rob.10076 http://dx.doi.org/10.1109/COASE.2019.8843255 http://dx.doi.org/10.1109/COASE.2018.8560398 http://dx.doi.org/10.1109/AIM.2011.6027122 http://dx.doi.org/10.1109/IROS.2015.7353596 http://dx.doi.org/10.1088/0960-1317/15/10/S07 http://dx.doi.org/10.1109/LRA.2023.3241757 https://mediatum.ub.tum.de/1703095

IEEE Robotics & Automation Magazine - June 2023

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2023

Contents
IEEE Robotics & Automation Magazine - June 2023 - Cover1
IEEE Robotics & Automation Magazine - June 2023 - Cover2
IEEE Robotics & Automation Magazine - June 2023 - Contents
IEEE Robotics & Automation Magazine - June 2023 - 2
IEEE Robotics & Automation Magazine - June 2023 - 3
IEEE Robotics & Automation Magazine - June 2023 - 4
IEEE Robotics & Automation Magazine - June 2023 - 5
IEEE Robotics & Automation Magazine - June 2023 - 6
IEEE Robotics & Automation Magazine - June 2023 - 7
IEEE Robotics & Automation Magazine - June 2023 - 8
IEEE Robotics & Automation Magazine - June 2023 - 9
IEEE Robotics & Automation Magazine - June 2023 - 10
IEEE Robotics & Automation Magazine - June 2023 - 11
IEEE Robotics & Automation Magazine - June 2023 - 12
IEEE Robotics & Automation Magazine - June 2023 - 13
IEEE Robotics & Automation Magazine - June 2023 - 14
IEEE Robotics & Automation Magazine - June 2023 - 15
IEEE Robotics & Automation Magazine - June 2023 - 16
IEEE Robotics & Automation Magazine - June 2023 - 17
IEEE Robotics & Automation Magazine - June 2023 - 18
IEEE Robotics & Automation Magazine - June 2023 - 19
IEEE Robotics & Automation Magazine - June 2023 - 20
IEEE Robotics & Automation Magazine - June 2023 - 21
IEEE Robotics & Automation Magazine - June 2023 - 22
IEEE Robotics & Automation Magazine - June 2023 - 23
IEEE Robotics & Automation Magazine - June 2023 - 24
IEEE Robotics & Automation Magazine - June 2023 - 25
IEEE Robotics & Automation Magazine - June 2023 - 26
IEEE Robotics & Automation Magazine - June 2023 - 27
IEEE Robotics & Automation Magazine - June 2023 - 28
IEEE Robotics & Automation Magazine - June 2023 - 29
IEEE Robotics & Automation Magazine - June 2023 - 30
IEEE Robotics & Automation Magazine - June 2023 - 31
IEEE Robotics & Automation Magazine - June 2023 - 32
IEEE Robotics & Automation Magazine - June 2023 - 33
IEEE Robotics & Automation Magazine - June 2023 - 34
IEEE Robotics & Automation Magazine - June 2023 - 35
IEEE Robotics & Automation Magazine - June 2023 - 36
IEEE Robotics & Automation Magazine - June 2023 - 37
IEEE Robotics & Automation Magazine - June 2023 - 38
IEEE Robotics & Automation Magazine - June 2023 - 39
IEEE Robotics & Automation Magazine - June 2023 - 40
IEEE Robotics & Automation Magazine - June 2023 - 41
IEEE Robotics & Automation Magazine - June 2023 - 42
IEEE Robotics & Automation Magazine - June 2023 - 43
IEEE Robotics & Automation Magazine - June 2023 - 44
IEEE Robotics & Automation Magazine - June 2023 - 45
IEEE Robotics & Automation Magazine - June 2023 - 46
IEEE Robotics & Automation Magazine - June 2023 - 47
IEEE Robotics & Automation Magazine - June 2023 - 48
IEEE Robotics & Automation Magazine - June 2023 - 49
IEEE Robotics & Automation Magazine - June 2023 - 50
IEEE Robotics & Automation Magazine - June 2023 - 51
IEEE Robotics & Automation Magazine - June 2023 - 52
IEEE Robotics & Automation Magazine - June 2023 - 53
IEEE Robotics & Automation Magazine - June 2023 - 54
IEEE Robotics & Automation Magazine - June 2023 - 55
IEEE Robotics & Automation Magazine - June 2023 - 56
IEEE Robotics & Automation Magazine - June 2023 - 57
IEEE Robotics & Automation Magazine - June 2023 - 58
IEEE Robotics & Automation Magazine - June 2023 - 59
IEEE Robotics & Automation Magazine - June 2023 - 60
IEEE Robotics & Automation Magazine - June 2023 - 61
IEEE Robotics & Automation Magazine - June 2023 - 62
IEEE Robotics & Automation Magazine - June 2023 - 63
IEEE Robotics & Automation Magazine - June 2023 - 64
IEEE Robotics & Automation Magazine - June 2023 - 65
IEEE Robotics & Automation Magazine - June 2023 - 66
IEEE Robotics & Automation Magazine - June 2023 - 67
IEEE Robotics & Automation Magazine - June 2023 - 68
IEEE Robotics & Automation Magazine - June 2023 - 69
IEEE Robotics & Automation Magazine - June 2023 - 70
IEEE Robotics & Automation Magazine - June 2023 - 71
IEEE Robotics & Automation Magazine - June 2023 - 72
IEEE Robotics & Automation Magazine - June 2023 - 73
IEEE Robotics & Automation Magazine - June 2023 - 74
IEEE Robotics & Automation Magazine - June 2023 - 75
IEEE Robotics & Automation Magazine - June 2023 - 76
IEEE Robotics & Automation Magazine - June 2023 - 77
IEEE Robotics & Automation Magazine - June 2023 - 78
IEEE Robotics & Automation Magazine - June 2023 - 79
IEEE Robotics & Automation Magazine - June 2023 - 80
IEEE Robotics & Automation Magazine - June 2023 - 81
IEEE Robotics & Automation Magazine - June 2023 - 82
IEEE Robotics & Automation Magazine - June 2023 - 83
IEEE Robotics & Automation Magazine - June 2023 - 84
IEEE Robotics & Automation Magazine - June 2023 - 85
IEEE Robotics & Automation Magazine - June 2023 - 86
IEEE Robotics & Automation Magazine - June 2023 - 87
IEEE Robotics & Automation Magazine - June 2023 - 88
IEEE Robotics & Automation Magazine - June 2023 - 89
IEEE Robotics & Automation Magazine - June 2023 - 90
IEEE Robotics & Automation Magazine - June 2023 - 91
IEEE Robotics & Automation Magazine - June 2023 - 92
IEEE Robotics & Automation Magazine - June 2023 - 93
IEEE Robotics & Automation Magazine - June 2023 - 94
IEEE Robotics & Automation Magazine - June 2023 - 95
IEEE Robotics & Automation Magazine - June 2023 - 96
IEEE Robotics & Automation Magazine - June 2023 - 97
IEEE Robotics & Automation Magazine - June 2023 - 98
IEEE Robotics & Automation Magazine - June 2023 - 99
IEEE Robotics & Automation Magazine - June 2023 - 100
IEEE Robotics & Automation Magazine - June 2023 - 101
IEEE Robotics & Automation Magazine - June 2023 - 102
IEEE Robotics & Automation Magazine - June 2023 - 103
IEEE Robotics & Automation Magazine - June 2023 - 104
IEEE Robotics & Automation Magazine - June 2023 - 105
IEEE Robotics & Automation Magazine - June 2023 - 106
IEEE Robotics & Automation Magazine - June 2023 - 107
IEEE Robotics & Automation Magazine - June 2023 - 108
IEEE Robotics & Automation Magazine - June 2023 - 109
IEEE Robotics & Automation Magazine - June 2023 - 110
IEEE Robotics & Automation Magazine - June 2023 - 111
IEEE Robotics & Automation Magazine - June 2023 - 112
IEEE Robotics & Automation Magazine - June 2023 - 113
IEEE Robotics & Automation Magazine - June 2023 - 114
IEEE Robotics & Automation Magazine - June 2023 - 115
IEEE Robotics & Automation Magazine - June 2023 - 116
IEEE Robotics & Automation Magazine - June 2023 - 117
IEEE Robotics & Automation Magazine - June 2023 - 118
IEEE Robotics & Automation Magazine - June 2023 - 119
IEEE Robotics & Automation Magazine - June 2023 - 120
IEEE Robotics & Automation Magazine - June 2023 - 121
IEEE Robotics & Automation Magazine - June 2023 - 122
IEEE Robotics & Automation Magazine - June 2023 - 123
IEEE Robotics & Automation Magazine - June 2023 - 124
IEEE Robotics & Automation Magazine - June 2023 - 125
IEEE Robotics & Automation Magazine - June 2023 - 126
IEEE Robotics & Automation Magazine - June 2023 - 127
IEEE Robotics & Automation Magazine - June 2023 - 128
IEEE Robotics & Automation Magazine - June 2023 - 129
IEEE Robotics & Automation Magazine - June 2023 - 130
IEEE Robotics & Automation Magazine - June 2023 - 131
IEEE Robotics & Automation Magazine - June 2023 - 132
IEEE Robotics & Automation Magazine - June 2023 - 133
IEEE Robotics & Automation Magazine - June 2023 - 134
IEEE Robotics & Automation Magazine - June 2023 - 135
IEEE Robotics & Automation Magazine - June 2023 - 136
IEEE Robotics & Automation Magazine - June 2023 - Cover3
IEEE Robotics & Automation Magazine - June 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com