IEEE Robotics & Automation Magazine - June 2023 - 76

Ensemble Mixture [1], critic-regularized regression [133],
implicit Q-learning [63], and MuZero Unplugged [116].
Another approach to offline RL is to leverage techniques
developed in machine learning, such as the work by Chen et al.
[20], who utilize the transformer architecture conditioned on
the desired reward, past states, and action to produce future
actions that achieve a desired return. Other work addresses
offline data themselves. Yarats et al. [140], e.g., propose using
reward-free unsupervised data first and then annotating the
reward to learn an RL policy. There are also some efforts to
produce large offline datasets. Dasari et al. [26] introduce an
open database to learn models for vision-based robotic manipulation
that consists of 15 million video frames for seven different
robot manipulators.
PARALLEL LEARNING
Parallel learning deals with utilizing one and possibly more
heterogeneous hardware resources in the most efficient way
by means of parallelization [see Figure 5(b)]. Furthermore, it
addresses how to implement scalability and the necessary
robustness to handle different sizes of a learning process.
There are several formulations of parallel learning architectures
that were developed throughout the years, such as A3C
[88], IMPALA [32], Ape-X [44], D4PG [11], and R2D2 [58].
All the mentioned architectures are robust to parallel deployment
and show large improvements in the sample efficiency
and performance of the final policy over the baselines. There
are also some adjacent optimization paradigms, such as evolutionary
strategies [114], that can be scaled to large proportions
and are capable of producing competitive policies in
comparison to RL-based ones. Other work by Mania et al.
[80] proposes using a variant of random search, augmented
random search, that is also very scalable and derives nearoptimal
policies.
Other work makes use of hardware accelerators to permit
massive parallelization and thus facilitate the training process
[73]. In this vein, Makoviychuk et al. [79] present Isaac Gym,
a fully GPU-based simulator for RL that is capable of simulating
a high number of environments by using a single GPU.
Building on this, Rudin et al. [113] use Isaac Gym to train a
quadruped to walk in minutes over increasingly complex terrain.
Finally, the combination of other optimization techniques
with RL seems to be a promising approach. For example, Jaderberg
et al. [48] present a two-level optimization evolutionary
process targeting a population of RL agents. This framework
enables agents, conditioned on pixels only, to play a complex
3D game, matching human performance.
LEARNING FROM DEMONSTRATION
Although learning from demonstration [115] is a research
field on its own, many RL approaches make use of such techniques.
As an introduction to the field, we refer to Osa et al.
[99] and Billard et al. [15]. Aside from standard techniques,
such as behavior cloning [9] (learning offline data in a supervised
way) and Dataset Aggregation (training the policy to
mimic an expert in an online fashion) [112], novel approaches
are presented by Florence et al. [35], proposing to use implicit
behavior cloning and to let the policy be presented by an
energy-based model [67]. Laskey et al. [65] present the Disturbances
for Augmenting Robot Trajectories algorithm that
collects demonstrations with injected noise while adjusting
the noise level according to the trained policy.
Other approaches first train a teacher policy on unchanging
task setups via, e.g., RL and distill a policy capable of interpolating
among different task setups, such as [7], which chooses
neural dynamical policies [8] to present the teacher and students.
Others learn teacher policies on true state information
to then derive a student policy conditioned on a reduced or substituted
input space, e.g., Chen et al. [21], whose final visionbased
policies are able to reorient objects in the shadow hand
domain, and Lee et al. [68], who also distill a vision-based
policy and test it in their red-green-blue-stacking benchmark.
Other work makes use of classical optimization methods to
represent the expert and distill their demonstrations into trainable
policies. Wang et al. [131] use a hybrid learning process
of RL and imitation learning, with the Optimization-based
Motion and Grasp planner [130] as the expert.
Other than using a teacher, some work utilizes human
demonstrations. Akbulut et al. [2] introduce a new framework
called Adaptive Conditional Neural Movement Primitives,
combining supervised learning and RL to conserve old skills
learned from robot demonstrations while being adaptive to
new environments. James and Davison [51] present a coarseto-fine
discrete RL algorithm to solve sparse reward manipulation
tasks by using only a small amount of demonstration
and exploration data (work extended by [49] and [50]). Celemin
et al. [19] include human corrective advice in the action
domain through a learning-from-demonstration approach,
while an RL algorithm guides the learning process by filtering
out human feedback that does not maximize the reward.
Trainer
Sampler
(a)
(b)
Trainer
Teacher
(c)
FIGURE 5. The guided RL methods integrated as a learning strategy. (a) Offline RL from a recorded dataset (see the " Offline RL " section).
(b) Parallel learning with multiple samplers and trainers (see the " Parallel Learning " section). (c) Learning from demonstration with
distilled student policies (see the " Learning From Demonstration " section).
76 IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 2023
Student

IEEE Robotics & Automation Magazine - June 2023

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - June 2023

Contents
IEEE Robotics & Automation Magazine - June 2023 - Cover1
IEEE Robotics & Automation Magazine - June 2023 - Cover2
IEEE Robotics & Automation Magazine - June 2023 - Contents
IEEE Robotics & Automation Magazine - June 2023 - 2
IEEE Robotics & Automation Magazine - June 2023 - 3
IEEE Robotics & Automation Magazine - June 2023 - 4
IEEE Robotics & Automation Magazine - June 2023 - 5
IEEE Robotics & Automation Magazine - June 2023 - 6
IEEE Robotics & Automation Magazine - June 2023 - 7
IEEE Robotics & Automation Magazine - June 2023 - 8
IEEE Robotics & Automation Magazine - June 2023 - 9
IEEE Robotics & Automation Magazine - June 2023 - 10
IEEE Robotics & Automation Magazine - June 2023 - 11
IEEE Robotics & Automation Magazine - June 2023 - 12
IEEE Robotics & Automation Magazine - June 2023 - 13
IEEE Robotics & Automation Magazine - June 2023 - 14
IEEE Robotics & Automation Magazine - June 2023 - 15
IEEE Robotics & Automation Magazine - June 2023 - 16
IEEE Robotics & Automation Magazine - June 2023 - 17
IEEE Robotics & Automation Magazine - June 2023 - 18
IEEE Robotics & Automation Magazine - June 2023 - 19
IEEE Robotics & Automation Magazine - June 2023 - 20
IEEE Robotics & Automation Magazine - June 2023 - 21
IEEE Robotics & Automation Magazine - June 2023 - 22
IEEE Robotics & Automation Magazine - June 2023 - 23
IEEE Robotics & Automation Magazine - June 2023 - 24
IEEE Robotics & Automation Magazine - June 2023 - 25
IEEE Robotics & Automation Magazine - June 2023 - 26
IEEE Robotics & Automation Magazine - June 2023 - 27
IEEE Robotics & Automation Magazine - June 2023 - 28
IEEE Robotics & Automation Magazine - June 2023 - 29
IEEE Robotics & Automation Magazine - June 2023 - 30
IEEE Robotics & Automation Magazine - June 2023 - 31
IEEE Robotics & Automation Magazine - June 2023 - 32
IEEE Robotics & Automation Magazine - June 2023 - 33
IEEE Robotics & Automation Magazine - June 2023 - 34
IEEE Robotics & Automation Magazine - June 2023 - 35
IEEE Robotics & Automation Magazine - June 2023 - 36
IEEE Robotics & Automation Magazine - June 2023 - 37
IEEE Robotics & Automation Magazine - June 2023 - 38
IEEE Robotics & Automation Magazine - June 2023 - 39
IEEE Robotics & Automation Magazine - June 2023 - 40
IEEE Robotics & Automation Magazine - June 2023 - 41
IEEE Robotics & Automation Magazine - June 2023 - 42
IEEE Robotics & Automation Magazine - June 2023 - 43
IEEE Robotics & Automation Magazine - June 2023 - 44
IEEE Robotics & Automation Magazine - June 2023 - 45
IEEE Robotics & Automation Magazine - June 2023 - 46
IEEE Robotics & Automation Magazine - June 2023 - 47
IEEE Robotics & Automation Magazine - June 2023 - 48
IEEE Robotics & Automation Magazine - June 2023 - 49
IEEE Robotics & Automation Magazine - June 2023 - 50
IEEE Robotics & Automation Magazine - June 2023 - 51
IEEE Robotics & Automation Magazine - June 2023 - 52
IEEE Robotics & Automation Magazine - June 2023 - 53
IEEE Robotics & Automation Magazine - June 2023 - 54
IEEE Robotics & Automation Magazine - June 2023 - 55
IEEE Robotics & Automation Magazine - June 2023 - 56
IEEE Robotics & Automation Magazine - June 2023 - 57
IEEE Robotics & Automation Magazine - June 2023 - 58
IEEE Robotics & Automation Magazine - June 2023 - 59
IEEE Robotics & Automation Magazine - June 2023 - 60
IEEE Robotics & Automation Magazine - June 2023 - 61
IEEE Robotics & Automation Magazine - June 2023 - 62
IEEE Robotics & Automation Magazine - June 2023 - 63
IEEE Robotics & Automation Magazine - June 2023 - 64
IEEE Robotics & Automation Magazine - June 2023 - 65
IEEE Robotics & Automation Magazine - June 2023 - 66
IEEE Robotics & Automation Magazine - June 2023 - 67
IEEE Robotics & Automation Magazine - June 2023 - 68
IEEE Robotics & Automation Magazine - June 2023 - 69
IEEE Robotics & Automation Magazine - June 2023 - 70
IEEE Robotics & Automation Magazine - June 2023 - 71
IEEE Robotics & Automation Magazine - June 2023 - 72
IEEE Robotics & Automation Magazine - June 2023 - 73
IEEE Robotics & Automation Magazine - June 2023 - 74
IEEE Robotics & Automation Magazine - June 2023 - 75
IEEE Robotics & Automation Magazine - June 2023 - 76
IEEE Robotics & Automation Magazine - June 2023 - 77
IEEE Robotics & Automation Magazine - June 2023 - 78
IEEE Robotics & Automation Magazine - June 2023 - 79
IEEE Robotics & Automation Magazine - June 2023 - 80
IEEE Robotics & Automation Magazine - June 2023 - 81
IEEE Robotics & Automation Magazine - June 2023 - 82
IEEE Robotics & Automation Magazine - June 2023 - 83
IEEE Robotics & Automation Magazine - June 2023 - 84
IEEE Robotics & Automation Magazine - June 2023 - 85
IEEE Robotics & Automation Magazine - June 2023 - 86
IEEE Robotics & Automation Magazine - June 2023 - 87
IEEE Robotics & Automation Magazine - June 2023 - 88
IEEE Robotics & Automation Magazine - June 2023 - 89
IEEE Robotics & Automation Magazine - June 2023 - 90
IEEE Robotics & Automation Magazine - June 2023 - 91
IEEE Robotics & Automation Magazine - June 2023 - 92
IEEE Robotics & Automation Magazine - June 2023 - 93
IEEE Robotics & Automation Magazine - June 2023 - 94
IEEE Robotics & Automation Magazine - June 2023 - 95
IEEE Robotics & Automation Magazine - June 2023 - 96
IEEE Robotics & Automation Magazine - June 2023 - 97
IEEE Robotics & Automation Magazine - June 2023 - 98
IEEE Robotics & Automation Magazine - June 2023 - 99
IEEE Robotics & Automation Magazine - June 2023 - 100
IEEE Robotics & Automation Magazine - June 2023 - 101
IEEE Robotics & Automation Magazine - June 2023 - 102
IEEE Robotics & Automation Magazine - June 2023 - 103
IEEE Robotics & Automation Magazine - June 2023 - 104
IEEE Robotics & Automation Magazine - June 2023 - 105
IEEE Robotics & Automation Magazine - June 2023 - 106
IEEE Robotics & Automation Magazine - June 2023 - 107
IEEE Robotics & Automation Magazine - June 2023 - 108
IEEE Robotics & Automation Magazine - June 2023 - 109
IEEE Robotics & Automation Magazine - June 2023 - 110
IEEE Robotics & Automation Magazine - June 2023 - 111
IEEE Robotics & Automation Magazine - June 2023 - 112
IEEE Robotics & Automation Magazine - June 2023 - 113
IEEE Robotics & Automation Magazine - June 2023 - 114
IEEE Robotics & Automation Magazine - June 2023 - 115
IEEE Robotics & Automation Magazine - June 2023 - 116
IEEE Robotics & Automation Magazine - June 2023 - 117
IEEE Robotics & Automation Magazine - June 2023 - 118
IEEE Robotics & Automation Magazine - June 2023 - 119
IEEE Robotics & Automation Magazine - June 2023 - 120
IEEE Robotics & Automation Magazine - June 2023 - 121
IEEE Robotics & Automation Magazine - June 2023 - 122
IEEE Robotics & Automation Magazine - June 2023 - 123
IEEE Robotics & Automation Magazine - June 2023 - 124
IEEE Robotics & Automation Magazine - June 2023 - 125
IEEE Robotics & Automation Magazine - June 2023 - 126
IEEE Robotics & Automation Magazine - June 2023 - 127
IEEE Robotics & Automation Magazine - June 2023 - 128
IEEE Robotics & Automation Magazine - June 2023 - 129
IEEE Robotics & Automation Magazine - June 2023 - 130
IEEE Robotics & Automation Magazine - June 2023 - 131
IEEE Robotics & Automation Magazine - June 2023 - 132
IEEE Robotics & Automation Magazine - June 2023 - 133
IEEE Robotics & Automation Magazine - June 2023 - 134
IEEE Robotics & Automation Magazine - June 2023 - 135
IEEE Robotics & Automation Magazine - June 2023 - 136
IEEE Robotics & Automation Magazine - June 2023 - Cover3
IEEE Robotics & Automation Magazine - June 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com