IEEE Robotics & Automation Magazine - March 2013 - 96
An Introduction to Cybernetics
W. Ross Ashby, John Wiley & Sons,
London, UK, 1963, 295 pages.
shby was a founder of cybernetics
and formulated certain concepts
of systems that are well
regarded today. This book is
intended to introduce the basics of
cybernetics as a way to characterize
machines not only by what they are, i.e.,
their nuts and bolts, but by what they
might do, considered as a set of possibilities. The author
uses simple
algebra and
Combinations can
short, carefully
be ordered and
defined sentences to point
related, giving useful
out observable
insights for regulating
objects and
events. He also
the real system in
expresses his
coordination with
concepts with
clear block diathe model.
grams and flow
charts. This
book contains 14 chapters divided into
three parts.
1) "Mechanisms"-includes chapters on
change, indeterminate machines,
machines with input, stability, and
the black box.
2) "Variety"-includes chapters on
quantity of variety, transmission of
variety, and incessant transmission.
3) "Regulation and Control"-includes
chapters on regulation in biological
A
Digital Object Identifier 10.1109/MRA.2013.2247707
Date of publication: 8 March 2013
The Robot Builder's Bonanza,
4th Edition
Gordon McComb, McGraw-Hill/
TAB Electronics, New York, NY,
2011, 736 pages.
he Robot Builder's Bonanza
was first published in 1987
and has continued to be a
popular handbook through
T
Digital Object Identifier 10.1109/MRA.2013.2247708
Date of publication: 8 March 2013
96
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
systems, requisite variety, error-controlled regulators, very large systems,
and, finally, amplification of power,
which also applies to intelligence.
Ashby believes that by correctly using
the principle of selection, even
human intelligence can be increased.
The primary question to a cyberneticist is how a machine is functioning.
Consider it as a black box. You can learn
about the black box by studying what it
does. Act on it with input, and observe
the output. Then the process can
be improved.
You can apply cybernetic principles
by correctly considering a system that
consists of interacting coordinated parts.
The state of equilibrium of the whole
relies on acceptance of equilibrium by
each part. Thus, the tendency of a wellregulated machine is to return to stability as a whole.
Ashby explains that the constraint is
an important feature of coordination in
machines as a part of control and regulation. However, a system may be too constrained so that adaptation is not possible.
Requisite variation must be given to the
machine when learning actions.
For example, imagine that a robot
learned to walk a path, balancing on
a flat surface. A great deal of constraint of motion could be given to it.
Then, imagine the robot is given an
uphill, winding path to walk.
Adaptation would be necessary to
walk successfully. Constraints would
have to be relaxed. The behavior of
walking would need to have some
variation, but not so much variation
that the robot falls over like a drunk.
Feedback from a regulator makes it
possible for the robot to adapt to
changes in environmental conditions.
Ashby also explains how error can be
used for regulation.
For better understanding, Ashby
points the reader to more complex
models. A model is useful to the
extent that it is a representative, as a
totality. But a model can be thought
of as a set of possible models: a number of simplifications, in a lattice.
Closely detailed approximations are
at the top, and distant, simpler
approximations are at the bottom.
Combinations can be ordered and
related, giving useful insights for regulating the real system in coordination with the model. From correct
regulation, a stable system evolves
that can accomplish the intended
purpose.
Ashby's principles are important
and useful for robotic systems. If only
one of the members of the total set of
concepts is implemented in a
machine, each implementation is
linked, as a member, to the total set of
cybernetic principles. The machine as
a unit will benefit from the relationship. Coordination, regulation, and
control of robotic devices can be
greatly improved by adapting and
applying these principles.
each of its four iterations. It is written
with a sense of humor and includes
fascinating tidbits. For example, did
you know that the word robot derived
from a Czech novelist/playwright
named Karel Capek who coined the
word robata in a 1917 short story?
The word robota in the Czech language means compulsory worker, and
what distinguishes a robot from other
machines is that it can perform some
kind of function or work. McComb
defines a robot as any device that
mimics human or animal function. It
can be autonomous, preprogrammed,
or radio controlled.
Eight carefully laid out sections provide a systematic guide to building a
stable robot that can navigate, respond,
and perform functions. One of the
premises of the book is modularity, and
the author encourages creative intermixing of different modules developed
in the chapters.
March 2013
-Reviewed by
C. Alexander Simpkins Sr., Ph.D.,
and Annellen M. Simpkins, Ph.D.,
San Diego, California
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2013
IEEE Robotics & Automation Magazine - March 2013 - Cover1
IEEE Robotics & Automation Magazine - March 2013 - Cover2
IEEE Robotics & Automation Magazine - March 2013 - 1
IEEE Robotics & Automation Magazine - March 2013 - 2
IEEE Robotics & Automation Magazine - March 2013 - 3
IEEE Robotics & Automation Magazine - March 2013 - 4
IEEE Robotics & Automation Magazine - March 2013 - 5
IEEE Robotics & Automation Magazine - March 2013 - 6
IEEE Robotics & Automation Magazine - March 2013 - 7
IEEE Robotics & Automation Magazine - March 2013 - 8
IEEE Robotics & Automation Magazine - March 2013 - 9
IEEE Robotics & Automation Magazine - March 2013 - 10
IEEE Robotics & Automation Magazine - March 2013 - 11
IEEE Robotics & Automation Magazine - March 2013 - 12
IEEE Robotics & Automation Magazine - March 2013 - 13
IEEE Robotics & Automation Magazine - March 2013 - 14
IEEE Robotics & Automation Magazine - March 2013 - 15
IEEE Robotics & Automation Magazine - March 2013 - 16
IEEE Robotics & Automation Magazine - March 2013 - 17
IEEE Robotics & Automation Magazine - March 2013 - 18
IEEE Robotics & Automation Magazine - March 2013 - 19
IEEE Robotics & Automation Magazine - March 2013 - 20
IEEE Robotics & Automation Magazine - March 2013 - 21
IEEE Robotics & Automation Magazine - March 2013 - 22
IEEE Robotics & Automation Magazine - March 2013 - 23
IEEE Robotics & Automation Magazine - March 2013 - 24
IEEE Robotics & Automation Magazine - March 2013 - 25
IEEE Robotics & Automation Magazine - March 2013 - 26
IEEE Robotics & Automation Magazine - March 2013 - 27
IEEE Robotics & Automation Magazine - March 2013 - 28
IEEE Robotics & Automation Magazine - March 2013 - 29
IEEE Robotics & Automation Magazine - March 2013 - 30
IEEE Robotics & Automation Magazine - March 2013 - 31
IEEE Robotics & Automation Magazine - March 2013 - 32
IEEE Robotics & Automation Magazine - March 2013 - 33
IEEE Robotics & Automation Magazine - March 2013 - 34
IEEE Robotics & Automation Magazine - March 2013 - 35
IEEE Robotics & Automation Magazine - March 2013 - 36
IEEE Robotics & Automation Magazine - March 2013 - 37
IEEE Robotics & Automation Magazine - March 2013 - 38
IEEE Robotics & Automation Magazine - March 2013 - 39
IEEE Robotics & Automation Magazine - March 2013 - 40
IEEE Robotics & Automation Magazine - March 2013 - 41
IEEE Robotics & Automation Magazine - March 2013 - 42
IEEE Robotics & Automation Magazine - March 2013 - 43
IEEE Robotics & Automation Magazine - March 2013 - 44
IEEE Robotics & Automation Magazine - March 2013 - 45
IEEE Robotics & Automation Magazine - March 2013 - 46
IEEE Robotics & Automation Magazine - March 2013 - 47
IEEE Robotics & Automation Magazine - March 2013 - 48
IEEE Robotics & Automation Magazine - March 2013 - 49
IEEE Robotics & Automation Magazine - March 2013 - 50
IEEE Robotics & Automation Magazine - March 2013 - 51
IEEE Robotics & Automation Magazine - March 2013 - 52
IEEE Robotics & Automation Magazine - March 2013 - 53
IEEE Robotics & Automation Magazine - March 2013 - 54
IEEE Robotics & Automation Magazine - March 2013 - 55
IEEE Robotics & Automation Magazine - March 2013 - 56
IEEE Robotics & Automation Magazine - March 2013 - 57
IEEE Robotics & Automation Magazine - March 2013 - 58
IEEE Robotics & Automation Magazine - March 2013 - 59
IEEE Robotics & Automation Magazine - March 2013 - 60
IEEE Robotics & Automation Magazine - March 2013 - 61
IEEE Robotics & Automation Magazine - March 2013 - 62
IEEE Robotics & Automation Magazine - March 2013 - 63
IEEE Robotics & Automation Magazine - March 2013 - 64
IEEE Robotics & Automation Magazine - March 2013 - 65
IEEE Robotics & Automation Magazine - March 2013 - 66
IEEE Robotics & Automation Magazine - March 2013 - 67
IEEE Robotics & Automation Magazine - March 2013 - 68
IEEE Robotics & Automation Magazine - March 2013 - 69
IEEE Robotics & Automation Magazine - March 2013 - 70
IEEE Robotics & Automation Magazine - March 2013 - 71
IEEE Robotics & Automation Magazine - March 2013 - 72
IEEE Robotics & Automation Magazine - March 2013 - 73
IEEE Robotics & Automation Magazine - March 2013 - 74
IEEE Robotics & Automation Magazine - March 2013 - 75
IEEE Robotics & Automation Magazine - March 2013 - 76
IEEE Robotics & Automation Magazine - March 2013 - 77
IEEE Robotics & Automation Magazine - March 2013 - 78
IEEE Robotics & Automation Magazine - March 2013 - 79
IEEE Robotics & Automation Magazine - March 2013 - 80
IEEE Robotics & Automation Magazine - March 2013 - 81
IEEE Robotics & Automation Magazine - March 2013 - 82
IEEE Robotics & Automation Magazine - March 2013 - 83
IEEE Robotics & Automation Magazine - March 2013 - 84
IEEE Robotics & Automation Magazine - March 2013 - 85
IEEE Robotics & Automation Magazine - March 2013 - 86
IEEE Robotics & Automation Magazine - March 2013 - 87
IEEE Robotics & Automation Magazine - March 2013 - 88
IEEE Robotics & Automation Magazine - March 2013 - 89
IEEE Robotics & Automation Magazine - March 2013 - 90
IEEE Robotics & Automation Magazine - March 2013 - 91
IEEE Robotics & Automation Magazine - March 2013 - 92
IEEE Robotics & Automation Magazine - March 2013 - 93
IEEE Robotics & Automation Magazine - March 2013 - 94
IEEE Robotics & Automation Magazine - March 2013 - 95
IEEE Robotics & Automation Magazine - March 2013 - 96
IEEE Robotics & Automation Magazine - March 2013 - 97
IEEE Robotics & Automation Magazine - March 2013 - 98
IEEE Robotics & Automation Magazine - March 2013 - 99
IEEE Robotics & Automation Magazine - March 2013 - 100
IEEE Robotics & Automation Magazine - March 2013 - 101
IEEE Robotics & Automation Magazine - March 2013 - 102
IEEE Robotics & Automation Magazine - March 2013 - 103
IEEE Robotics & Automation Magazine - March 2013 - 104
IEEE Robotics & Automation Magazine - March 2013 - 105
IEEE Robotics & Automation Magazine - March 2013 - 106
IEEE Robotics & Automation Magazine - March 2013 - 107
IEEE Robotics & Automation Magazine - March 2013 - 108
IEEE Robotics & Automation Magazine - March 2013 - 109
IEEE Robotics & Automation Magazine - March 2013 - 110
IEEE Robotics & Automation Magazine - March 2013 - 111
IEEE Robotics & Automation Magazine - March 2013 - 112
IEEE Robotics & Automation Magazine - March 2013 - 113
IEEE Robotics & Automation Magazine - March 2013 - 114
IEEE Robotics & Automation Magazine - March 2013 - 115
IEEE Robotics & Automation Magazine - March 2013 - 116
IEEE Robotics & Automation Magazine - March 2013 - 117
IEEE Robotics & Automation Magazine - March 2013 - 118
IEEE Robotics & Automation Magazine - March 2013 - 119
IEEE Robotics & Automation Magazine - March 2013 - 120
IEEE Robotics & Automation Magazine - March 2013 - 121
IEEE Robotics & Automation Magazine - March 2013 - 122
IEEE Robotics & Automation Magazine - March 2013 - 123
IEEE Robotics & Automation Magazine - March 2013 - 124
IEEE Robotics & Automation Magazine - March 2013 - 125
IEEE Robotics & Automation Magazine - March 2013 - 126
IEEE Robotics & Automation Magazine - March 2013 - 127
IEEE Robotics & Automation Magazine - March 2013 - 128
IEEE Robotics & Automation Magazine - March 2013 - Cover3
IEEE Robotics & Automation Magazine - March 2013 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com