IEEE Robotics & Automation Magazine - March 2015 - 98
hands due to a spinal
cord injury was able to
use the glove to grasp
objects of various shapes.
Wrist motion was used as
the control input for easy
and intuitive control.
A Wearable Robot
Without an
Exoskeleton
When people suffer paralysis of the hand and fingers in
the wake of injuries or diseases, such as spinal cord injury
[1], stroke [2], and cerebral palsy [3], they often cannot perform even the simplest activities of daily life. Tetraplegics [1]
are particularly disabled. A wearable hand robot that
restores basic hand and finger function would greatly
improve quality of life for people with hand motility problems. Such a hand robot should be natural looking and
Figure 1. The Exo-Glove allows the disabled to perform everyday
tasks, greatly improving their quality of life.
Actuation
Module
Fabric
ric Straps
Outer
Sheath
O
of Bowden
Cable
Flexor/
Extensor
Tendons
Tendon
Anchoring (TA)
Support
Figure 2. The Exo-Glove is easy to wear because the actuator can
be positioned remotely (for example, on the upper arm or on
the wheelchair).
98
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
march 2015
simple to implement so that people feel psychologically
comfortable wearing it.
A number of wearable hand robots have been developed,
most of them consisting of serially connected rigid links and
joints that assist body motion by applying force to the body
part to which they are attached [4]-[8]. The positioning of
these links and joints differs with the body part to which the
robot is attached. The frames of hard exoskeleton robots for
the legs or arms can be positioned along the sides of the
limbs, but the closeness of the fingers means that the frames
for a hand robot must be placed along the finger tops. To
match the axes of the finger and the exoskeleton, many wearable hand robots use linkages [4]-[7] and rack-and-pinion
mechanisms [8].
One way to overcome the limitations of a rigid wearable
hand robot is to dispense with frames and, instead, attach
actuators directly to the fingers. In this design, the function of
the rigid frame of a conventional robot is performed by the
finger bones, and actuation can be accomplished by mechanical tendons, air, or other soft actuators. In the literature, these
robots are referred to as soft wearable robots, soft exoskeletons,
exosuits [9], or exotendons [10]. Such robots do not have joint
alignment problems, and they are compact and lightweight
because of their simple structure and the materials used to
make them. Several soft wearable robots for the hand have
been developed [10]-[12], the majority of which use tendon
drives [10], [12].
The tendon drive system does, however, pose some design
challenges as follows.
● Tendons that are attached to the body without the use of an
exoskeleton apply shear forces to the attachment points. If
the tendons are attached by means of a soft material, the
shear forces can move the attachment point and obstruct
force transmission.
● In conventional tendon drive systems, pretension is necessary for good performance of the robot. However, in soft
wearable robots, pretension can cause discomfort or injury,
as well as hampering efficiency because of increased friction along the tendon path.
● Conventional adaptation mechanisms that enable objects
of differing shapes to be grasped by simple control use
multiple rigid mechanical components. Soft wearable
robots for the hand require a new adaptation mechanism
to accomplish the same task.
The Exo-Glove [13] employs a soft tendon routing system
inspired by the human musculoskeletal system (see Figures 1
and 2). The developed force transmission components are
firmly attached to the body even though they consist of fabrics, with the exception of a thin anchor. All the elements of
the routing system, including the actuator, are designed for
operation without pretension, resulting in improved safety,
comfort in use, and system efficiency. We developed a new
adaptation mechanism for the soft tendon routing system by
modifying the conventional differential mechanism. This
reduced the complexity of the system and enhanced the handling of various objects. We verified the robot function
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2015
IEEE Robotics & Automation Magazine - March 2015 - Cover1
IEEE Robotics & Automation Magazine - March 2015 - Cover2
IEEE Robotics & Automation Magazine - March 2015 - 1
IEEE Robotics & Automation Magazine - March 2015 - 2
IEEE Robotics & Automation Magazine - March 2015 - 3
IEEE Robotics & Automation Magazine - March 2015 - 4
IEEE Robotics & Automation Magazine - March 2015 - 5
IEEE Robotics & Automation Magazine - March 2015 - 6
IEEE Robotics & Automation Magazine - March 2015 - 7
IEEE Robotics & Automation Magazine - March 2015 - 8
IEEE Robotics & Automation Magazine - March 2015 - 9
IEEE Robotics & Automation Magazine - March 2015 - 10
IEEE Robotics & Automation Magazine - March 2015 - 11
IEEE Robotics & Automation Magazine - March 2015 - 12
IEEE Robotics & Automation Magazine - March 2015 - 13
IEEE Robotics & Automation Magazine - March 2015 - 14
IEEE Robotics & Automation Magazine - March 2015 - 15
IEEE Robotics & Automation Magazine - March 2015 - 16
IEEE Robotics & Automation Magazine - March 2015 - 17
IEEE Robotics & Automation Magazine - March 2015 - 18
IEEE Robotics & Automation Magazine - March 2015 - 19
IEEE Robotics & Automation Magazine - March 2015 - 20
IEEE Robotics & Automation Magazine - March 2015 - 21
IEEE Robotics & Automation Magazine - March 2015 - 22
IEEE Robotics & Automation Magazine - March 2015 - 23
IEEE Robotics & Automation Magazine - March 2015 - 24
IEEE Robotics & Automation Magazine - March 2015 - 25
IEEE Robotics & Automation Magazine - March 2015 - 26
IEEE Robotics & Automation Magazine - March 2015 - 27
IEEE Robotics & Automation Magazine - March 2015 - 28
IEEE Robotics & Automation Magazine - March 2015 - 29
IEEE Robotics & Automation Magazine - March 2015 - 30
IEEE Robotics & Automation Magazine - March 2015 - 31
IEEE Robotics & Automation Magazine - March 2015 - 32
IEEE Robotics & Automation Magazine - March 2015 - 33
IEEE Robotics & Automation Magazine - March 2015 - 34
IEEE Robotics & Automation Magazine - March 2015 - 35
IEEE Robotics & Automation Magazine - March 2015 - 36
IEEE Robotics & Automation Magazine - March 2015 - 37
IEEE Robotics & Automation Magazine - March 2015 - 38
IEEE Robotics & Automation Magazine - March 2015 - 39
IEEE Robotics & Automation Magazine - March 2015 - 40
IEEE Robotics & Automation Magazine - March 2015 - 41
IEEE Robotics & Automation Magazine - March 2015 - 42
IEEE Robotics & Automation Magazine - March 2015 - 43
IEEE Robotics & Automation Magazine - March 2015 - 44
IEEE Robotics & Automation Magazine - March 2015 - 45
IEEE Robotics & Automation Magazine - March 2015 - 46
IEEE Robotics & Automation Magazine - March 2015 - 47
IEEE Robotics & Automation Magazine - March 2015 - 48
IEEE Robotics & Automation Magazine - March 2015 - 49
IEEE Robotics & Automation Magazine - March 2015 - 50
IEEE Robotics & Automation Magazine - March 2015 - 51
IEEE Robotics & Automation Magazine - March 2015 - 52
IEEE Robotics & Automation Magazine - March 2015 - 53
IEEE Robotics & Automation Magazine - March 2015 - 54
IEEE Robotics & Automation Magazine - March 2015 - 55
IEEE Robotics & Automation Magazine - March 2015 - 56
IEEE Robotics & Automation Magazine - March 2015 - 57
IEEE Robotics & Automation Magazine - March 2015 - 58
IEEE Robotics & Automation Magazine - March 2015 - 59
IEEE Robotics & Automation Magazine - March 2015 - 60
IEEE Robotics & Automation Magazine - March 2015 - 61
IEEE Robotics & Automation Magazine - March 2015 - 62
IEEE Robotics & Automation Magazine - March 2015 - 63
IEEE Robotics & Automation Magazine - March 2015 - 64
IEEE Robotics & Automation Magazine - March 2015 - 65
IEEE Robotics & Automation Magazine - March 2015 - 66
IEEE Robotics & Automation Magazine - March 2015 - 67
IEEE Robotics & Automation Magazine - March 2015 - 68
IEEE Robotics & Automation Magazine - March 2015 - 69
IEEE Robotics & Automation Magazine - March 2015 - 70
IEEE Robotics & Automation Magazine - March 2015 - 71
IEEE Robotics & Automation Magazine - March 2015 - 72
IEEE Robotics & Automation Magazine - March 2015 - 73
IEEE Robotics & Automation Magazine - March 2015 - 74
IEEE Robotics & Automation Magazine - March 2015 - 75
IEEE Robotics & Automation Magazine - March 2015 - 76
IEEE Robotics & Automation Magazine - March 2015 - 77
IEEE Robotics & Automation Magazine - March 2015 - 78
IEEE Robotics & Automation Magazine - March 2015 - 79
IEEE Robotics & Automation Magazine - March 2015 - 80
IEEE Robotics & Automation Magazine - March 2015 - 81
IEEE Robotics & Automation Magazine - March 2015 - 82
IEEE Robotics & Automation Magazine - March 2015 - 83
IEEE Robotics & Automation Magazine - March 2015 - 84
IEEE Robotics & Automation Magazine - March 2015 - 85
IEEE Robotics & Automation Magazine - March 2015 - 86
IEEE Robotics & Automation Magazine - March 2015 - 87
IEEE Robotics & Automation Magazine - March 2015 - 88
IEEE Robotics & Automation Magazine - March 2015 - 89
IEEE Robotics & Automation Magazine - March 2015 - 90
IEEE Robotics & Automation Magazine - March 2015 - 91
IEEE Robotics & Automation Magazine - March 2015 - 92
IEEE Robotics & Automation Magazine - March 2015 - 93
IEEE Robotics & Automation Magazine - March 2015 - 94
IEEE Robotics & Automation Magazine - March 2015 - 95
IEEE Robotics & Automation Magazine - March 2015 - 96
IEEE Robotics & Automation Magazine - March 2015 - 97
IEEE Robotics & Automation Magazine - March 2015 - 98
IEEE Robotics & Automation Magazine - March 2015 - 99
IEEE Robotics & Automation Magazine - March 2015 - 100
IEEE Robotics & Automation Magazine - March 2015 - 101
IEEE Robotics & Automation Magazine - March 2015 - 102
IEEE Robotics & Automation Magazine - March 2015 - 103
IEEE Robotics & Automation Magazine - March 2015 - 104
IEEE Robotics & Automation Magazine - March 2015 - 105
IEEE Robotics & Automation Magazine - March 2015 - 106
IEEE Robotics & Automation Magazine - March 2015 - 107
IEEE Robotics & Automation Magazine - March 2015 - 108
IEEE Robotics & Automation Magazine - March 2015 - 109
IEEE Robotics & Automation Magazine - March 2015 - 110
IEEE Robotics & Automation Magazine - March 2015 - 111
IEEE Robotics & Automation Magazine - March 2015 - 112
IEEE Robotics & Automation Magazine - March 2015 - 113
IEEE Robotics & Automation Magazine - March 2015 - 114
IEEE Robotics & Automation Magazine - March 2015 - 115
IEEE Robotics & Automation Magazine - March 2015 - 116
IEEE Robotics & Automation Magazine - March 2015 - 117
IEEE Robotics & Automation Magazine - March 2015 - 118
IEEE Robotics & Automation Magazine - March 2015 - 119
IEEE Robotics & Automation Magazine - March 2015 - 120
IEEE Robotics & Automation Magazine - March 2015 - 121
IEEE Robotics & Automation Magazine - March 2015 - 122
IEEE Robotics & Automation Magazine - March 2015 - 123
IEEE Robotics & Automation Magazine - March 2015 - 124
IEEE Robotics & Automation Magazine - March 2015 - 125
IEEE Robotics & Automation Magazine - March 2015 - 126
IEEE Robotics & Automation Magazine - March 2015 - 127
IEEE Robotics & Automation Magazine - March 2015 - 128
IEEE Robotics & Automation Magazine - March 2015 - 129
IEEE Robotics & Automation Magazine - March 2015 - 130
IEEE Robotics & Automation Magazine - March 2015 - 131
IEEE Robotics & Automation Magazine - March 2015 - 132
IEEE Robotics & Automation Magazine - March 2015 - 133
IEEE Robotics & Automation Magazine - March 2015 - 134
IEEE Robotics & Automation Magazine - March 2015 - 135
IEEE Robotics & Automation Magazine - March 2015 - 136
IEEE Robotics & Automation Magazine - March 2015 - 137
IEEE Robotics & Automation Magazine - March 2015 - 138
IEEE Robotics & Automation Magazine - March 2015 - 139
IEEE Robotics & Automation Magazine - March 2015 - 140
IEEE Robotics & Automation Magazine - March 2015 - 141
IEEE Robotics & Automation Magazine - March 2015 - 142
IEEE Robotics & Automation Magazine - March 2015 - 143
IEEE Robotics & Automation Magazine - March 2015 - 144
IEEE Robotics & Automation Magazine - March 2015 - 145
IEEE Robotics & Automation Magazine - March 2015 - 146
IEEE Robotics & Automation Magazine - March 2015 - 147
IEEE Robotics & Automation Magazine - March 2015 - 148
IEEE Robotics & Automation Magazine - March 2015 - 149
IEEE Robotics & Automation Magazine - March 2015 - 150
IEEE Robotics & Automation Magazine - March 2015 - 151
IEEE Robotics & Automation Magazine - March 2015 - 152
IEEE Robotics & Automation Magazine - March 2015 - Cover3
IEEE Robotics & Automation Magazine - March 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com