IEEE Robotics & Automation Magazine - March 2017 - 47

We tested chassis #7 in an outdoor environment (see
Figure 1), where it navigated uneven terrain with steps up to
approximately 4 cm. Additionally, chassis #7 successfully
demonstrated walking with a failed front-right limb while the
rest of the limbs continued their programmed alternating
tripod gait. These tests demonstrate a promising robustness to
environmental and design uncertainty.
Open-Source Design
We hope to encourage broad use and experimentation
with PARF robots. The reader who wishes to build the
hexapod described herein may find the design files at
https://github.com/BIRDSLab in the BigANT repository
and the pyckbot software library in the pyckbot repository. Assembly tutorial and additional information are in
the video that accompanies this article on IEEE Xplore.
Benefits and Limitations of PARF
PARF mechanisms face limitations with respect to mechanism strength and durability and have difficulty limiting play
over large distances due to local deformations and low tolerances. Both of these issues can be partially overcome with
supporting structures and parallel linkages. As functional
requirements for force and precision become more demanding, PARF designs may be altered to use other materials. In
that case, foam-board PARF mechanisms may still perform
an important role in prototyping.
PARF mechanisms offer a number of advantages compared to metal and hard-plastic mechanisms. With PARF, a
large and useful design space can be explored at a small cost
in time, money, and tooling. Building PARF mechanisms is
approachable for novice designers and is routinely taught to
undergraduates with no mechanical design background. Only
a minimal level of two-dimensional computer-aided design
skill is required, and no knowledge of computer-aided manufacturing. Mechanisms can often be repaired by splinting and
taping, and new features can be prototyped easily and tested
before design files are changed.
We consider the greatest strength of PARF its ability to
create and refine customized robotic mechanisms without
requiring the logistic support structure of a research lab or
industrial research and development department. The
impact of PARF will be greatest for those with access to fewer
resources and a smaller industrial base upon which to rely.
Whether it is rescue workers at a remote disaster site, students learning about robots in a low-income school district,
graduates just out of college founding a robotics start-up
company, a disaster-response team working out of an airdropped container, or the very first humans exploring the
surface of Mars, PARF would allow them to build useful
robots quickly, inexpensively, and with only a few tools.
Acknowledgments
We wish to thank the anonymous reviewers and D. Miller, S.
Fuller, M. Goli, J. Brown, S. Desousa, E. Eklov, D. Litz, A.
Myers, and E. Revzen for contribution to various stages of this

project. This work was supported in part by Army Research
Office grants W911NF-12-1-0284 and W911NF-14-1-0573
to S. Revzen.
References
[1] D. W. Haldane, K. C. Peterson, F. L. G. Bermundez, and R. S. Fearing, "Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot," in Proc. IEEE Int. Conf. Robotics Automation, 2013,
pp. 3279-3286.
[2] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood, "Controlled flight of a biologically inspired, insect-scale robot," Science, vol.
340, no. 6132, pp. 603-607, 2013.
[3] D. Miller, I. Fitzner, S. B. Fuller, and S. Revzen, "Focused modularity:
Rapid iteration of design and fabrication of a meter-scale hexapedal robot,"
in Proc. Assistive Robotics 18th Int. Conf. Climbing and Walking Robots and the
Support Technologies for Mobile Machines, Hangzhou, China, 2015, pp. 430-438.
[4] A. M. Hoover and R. S. Fearing, "Fast scale prototyping for folded
millirobots," in Proc. IEEE Int. Conf. Robotics Automation, Pasadena,
CA, 2008, pp. 1777-1778.
[5] A. M. Hoover, E. Steltz, and R. S. Fearing, "Roach: An autonomous
2.4g crawling hexapod robot," in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, 2008, pp. 26-33.
[6] P. Birkmeyer, K. Peterson, and R. S. Fearing, "Dash: A dynamic 16g
hexapedal robot," in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems. 2009, pp. 2683-2689.
[7] J. Koh, S. Jung, R. J. Wood, and K. Cho, "A jumping robotic insect
based on a torque reversal catapult mechanism," in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, 2013, pp. 3796-796.
[8] K. L. Hoffman, and R. J. Wood, "Myriapod-like ambulation of a segmented microrobot,i Autonomous Robots, vol. 31, no. 1, pp. 103-114, 2011.
[9] J. P. Whitney, P. S. Sreetharan, K. Y. Ma, and R. J. Wood, "Pop-up
book mems,o J. Micromech. Microeng., vol. 21, no. 11, 2011.
[10] R. C. Hibbeler, Statics and Mechanics of Materials. Englewood
Cliffs, NJ: Prentice Hall, 2011.
[11] P. Holmes, R. J. Full, D. E. Koditschek, and J. M. Guckenheimer,
"The dynamics of legged locomotion: Models, analyses, and challenges," SIAM Rev., vol. 48, no. 2, pp. 207-304, June 2006.
[12] J. Davey, J. Sastra, M. Piccoli, and M. Yim, "ModLock: A manual
connector for reconfigurable modular robots," in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, 2012, pp. 3217-3222.
[13] S. Revzen, J. Sastra, N. Eckenstein, and M. Yim, "Ckbot platform
for the ICRA 2010 planetary challenge," in Proc. Workshop Modular
Robots: State of the Art, IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2010, pp. 11-12.

Ian Fitzner, University of Michigan, Ann Arbor, Michigan.
E-mail: fitzneri@umich.edu.
Yue Sun, University of Michigan, Ann Arbor, Michigan.
E-mail: heressun@umich.edu.
Vikram Sachdeva, University of Michigan, Ann Arbor, Michigan. E-mail: sachdva@umich.edu.
S. Revzen, University of Michigan, Ann Arbor, Michigan.
E-mail: shrevzen@umich.edu.
March 2017

*

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

47


https://www.github.com/BIRDSLab

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2017

IEEE Robotics & Automation Magazine - March 2017 - Cover1
IEEE Robotics & Automation Magazine - March 2017 - Cover2
IEEE Robotics & Automation Magazine - March 2017 - 1
IEEE Robotics & Automation Magazine - March 2017 - 2
IEEE Robotics & Automation Magazine - March 2017 - 3
IEEE Robotics & Automation Magazine - March 2017 - 4
IEEE Robotics & Automation Magazine - March 2017 - 5
IEEE Robotics & Automation Magazine - March 2017 - 6
IEEE Robotics & Automation Magazine - March 2017 - 7
IEEE Robotics & Automation Magazine - March 2017 - 8
IEEE Robotics & Automation Magazine - March 2017 - 9
IEEE Robotics & Automation Magazine - March 2017 - 10
IEEE Robotics & Automation Magazine - March 2017 - 11
IEEE Robotics & Automation Magazine - March 2017 - 12
IEEE Robotics & Automation Magazine - March 2017 - 13
IEEE Robotics & Automation Magazine - March 2017 - 14
IEEE Robotics & Automation Magazine - March 2017 - 15
IEEE Robotics & Automation Magazine - March 2017 - 16
IEEE Robotics & Automation Magazine - March 2017 - 17
IEEE Robotics & Automation Magazine - March 2017 - 18
IEEE Robotics & Automation Magazine - March 2017 - 19
IEEE Robotics & Automation Magazine - March 2017 - 20
IEEE Robotics & Automation Magazine - March 2017 - 21
IEEE Robotics & Automation Magazine - March 2017 - 22
IEEE Robotics & Automation Magazine - March 2017 - 23
IEEE Robotics & Automation Magazine - March 2017 - 24
IEEE Robotics & Automation Magazine - March 2017 - 25
IEEE Robotics & Automation Magazine - March 2017 - 26
IEEE Robotics & Automation Magazine - March 2017 - 27
IEEE Robotics & Automation Magazine - March 2017 - 28
IEEE Robotics & Automation Magazine - March 2017 - 29
IEEE Robotics & Automation Magazine - March 2017 - 30
IEEE Robotics & Automation Magazine - March 2017 - 31
IEEE Robotics & Automation Magazine - March 2017 - 32
IEEE Robotics & Automation Magazine - March 2017 - 33
IEEE Robotics & Automation Magazine - March 2017 - 34
IEEE Robotics & Automation Magazine - March 2017 - 35
IEEE Robotics & Automation Magazine - March 2017 - 36
IEEE Robotics & Automation Magazine - March 2017 - 37
IEEE Robotics & Automation Magazine - March 2017 - 38
IEEE Robotics & Automation Magazine - March 2017 - 39
IEEE Robotics & Automation Magazine - March 2017 - 40
IEEE Robotics & Automation Magazine - March 2017 - 41
IEEE Robotics & Automation Magazine - March 2017 - 42
IEEE Robotics & Automation Magazine - March 2017 - 43
IEEE Robotics & Automation Magazine - March 2017 - 44
IEEE Robotics & Automation Magazine - March 2017 - 45
IEEE Robotics & Automation Magazine - March 2017 - 46
IEEE Robotics & Automation Magazine - March 2017 - 47
IEEE Robotics & Automation Magazine - March 2017 - 48
IEEE Robotics & Automation Magazine - March 2017 - 49
IEEE Robotics & Automation Magazine - March 2017 - 50
IEEE Robotics & Automation Magazine - March 2017 - 51
IEEE Robotics & Automation Magazine - March 2017 - 52
IEEE Robotics & Automation Magazine - March 2017 - 53
IEEE Robotics & Automation Magazine - March 2017 - 54
IEEE Robotics & Automation Magazine - March 2017 - 55
IEEE Robotics & Automation Magazine - March 2017 - 56
IEEE Robotics & Automation Magazine - March 2017 - 57
IEEE Robotics & Automation Magazine - March 2017 - 58
IEEE Robotics & Automation Magazine - March 2017 - 59
IEEE Robotics & Automation Magazine - March 2017 - 60
IEEE Robotics & Automation Magazine - March 2017 - 61
IEEE Robotics & Automation Magazine - March 2017 - 62
IEEE Robotics & Automation Magazine - March 2017 - 63
IEEE Robotics & Automation Magazine - March 2017 - 64
IEEE Robotics & Automation Magazine - March 2017 - 65
IEEE Robotics & Automation Magazine - March 2017 - 66
IEEE Robotics & Automation Magazine - March 2017 - 67
IEEE Robotics & Automation Magazine - March 2017 - 68
IEEE Robotics & Automation Magazine - March 2017 - 69
IEEE Robotics & Automation Magazine - March 2017 - 70
IEEE Robotics & Automation Magazine - March 2017 - 71
IEEE Robotics & Automation Magazine - March 2017 - 72
IEEE Robotics & Automation Magazine - March 2017 - 73
IEEE Robotics & Automation Magazine - March 2017 - 74
IEEE Robotics & Automation Magazine - March 2017 - 75
IEEE Robotics & Automation Magazine - March 2017 - 76
IEEE Robotics & Automation Magazine - March 2017 - 77
IEEE Robotics & Automation Magazine - March 2017 - 78
IEEE Robotics & Automation Magazine - March 2017 - 79
IEEE Robotics & Automation Magazine - March 2017 - 80
IEEE Robotics & Automation Magazine - March 2017 - 81
IEEE Robotics & Automation Magazine - March 2017 - 82
IEEE Robotics & Automation Magazine - March 2017 - 83
IEEE Robotics & Automation Magazine - March 2017 - 84
IEEE Robotics & Automation Magazine - March 2017 - 85
IEEE Robotics & Automation Magazine - March 2017 - 86
IEEE Robotics & Automation Magazine - March 2017 - 87
IEEE Robotics & Automation Magazine - March 2017 - 88
IEEE Robotics & Automation Magazine - March 2017 - 89
IEEE Robotics & Automation Magazine - March 2017 - 90
IEEE Robotics & Automation Magazine - March 2017 - 91
IEEE Robotics & Automation Magazine - March 2017 - 92
IEEE Robotics & Automation Magazine - March 2017 - 93
IEEE Robotics & Automation Magazine - March 2017 - 94
IEEE Robotics & Automation Magazine - March 2017 - 95
IEEE Robotics & Automation Magazine - March 2017 - 96
IEEE Robotics & Automation Magazine - March 2017 - 97
IEEE Robotics & Automation Magazine - March 2017 - 98
IEEE Robotics & Automation Magazine - March 2017 - 99
IEEE Robotics & Automation Magazine - March 2017 - 100
IEEE Robotics & Automation Magazine - March 2017 - 101
IEEE Robotics & Automation Magazine - March 2017 - 102
IEEE Robotics & Automation Magazine - March 2017 - 103
IEEE Robotics & Automation Magazine - March 2017 - 104
IEEE Robotics & Automation Magazine - March 2017 - 105
IEEE Robotics & Automation Magazine - March 2017 - 106
IEEE Robotics & Automation Magazine - March 2017 - 107
IEEE Robotics & Automation Magazine - March 2017 - 108
IEEE Robotics & Automation Magazine - March 2017 - 109
IEEE Robotics & Automation Magazine - March 2017 - 110
IEEE Robotics & Automation Magazine - March 2017 - 111
IEEE Robotics & Automation Magazine - March 2017 - 112
IEEE Robotics & Automation Magazine - March 2017 - 113
IEEE Robotics & Automation Magazine - March 2017 - 114
IEEE Robotics & Automation Magazine - March 2017 - 115
IEEE Robotics & Automation Magazine - March 2017 - 116
IEEE Robotics & Automation Magazine - March 2017 - Cover3
IEEE Robotics & Automation Magazine - March 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com