IEEE Robotics & Automation Magazine - March 2017 - 79
teachers requires a huge effort, based on a good mix between
robotics and educational skills. Moreover, educational material varies from school to school, as requirements are very
dependent on local educational programs and languages. A
crowd-sourcing approach may solve this problem; an active
community of users can contribute to the development of the
material in a distributed manner, adapting the material to the
local situation. LEGO itself is moving in this direction by promoting communities of users [12] with a user-producer
interaction similar to that of open hardware projects. An
open-source community regrouping developers, manufacturers, and end users is therefore a very interesting model to
address the distributed development and sharing of educational material and the diffusion of training sessions. In this
article, we study a case of implementation of this model.
Design Choices
We designed the Thymio robot along seven main axes: a low
price to address a larger number of users; a feature set that suits
both genders and multiple ages from young children to adults;
a mechanical design that promotes creativity; a combination of
sensors, actuators, and programming features that facilitates
learning; a set of ready-to-use programs to quickly access
robotic behaviors; an accessible programming environment;
and an open-source community contributing to design and dissemination. The result is a miniature differential-wheeled robot
suited for use on a desktop [FigureĀ 1(a)]. The robot is robust
enough to be mishandled by children; it can fall from a table
without breaking. It features a translucent white hull and a wide
range of sensors and actuators [Figure 1(b)]. The robot has an
embedded battery, rechargeable by a universal serial bus (USB),
that provides 3-5 h of power. More details on the robot and the
previous research results can be found in [13], [14].
A Low Price
Price is key in the adoption of robots by schools [15]. Thus, the
design of Thymio targeted low production costs while including a broad range of functionalities enabling flexibility. Because
in this type of robot the main cost comes from electronics and
sensors [16], we focused on low-cost sensors that allow rich
interactions with both the environment and the user.
The resulting Thymio robot possesses a large number of
simple sensors: seven horizontal proximity sensors, two infrared sensors pointing to the ground, a three-axis accelerometer,
a thermistor, and a microphone. Five capacitive touch buttons
organized as a direction pad form an intuitive user interface.
Compared to physical buttons, these simplify the plastic hull of
the robot and make it more robust. A remote control receiver
provides additional distant buttons. Most of these devices cost
less than US$0.20, the most expensive being the accelerometer
with a cost of about US$0.80, which is an acceptable price
given the possibilities it brings to the robot. We also chose lowcost toy motors and control them in speed (maximum of
13 cm/s) measuring the back-electromotive force.
We evaluated several microcontrollers and chose the
PIC24F from Microchip because it integrates a USB interface
and can drive capacitive touch buttons directly, saving additional components. This microcontroller controls all sensors
Five Capacitive Touch
Buttons, Activity Display,
and On-Off Function
USB Dongle*
Pencil Support
Li-Po Battery Level
USB Connection
Programming and
Recharging
Wireless Module*
Wir
Memory-Card Slot
Loudspeaker
Hook for Trailer
Two Proximity Sensors
Microphone
Infrared
RemoteIInf
nr
Control Receiver
Co
(a)
Mechanical Attachment
Three-Axis
Accelerometer
Thr
Thre
Thr
h ee-Axis A
Two Wheels and
Speed Control
Five
Fi Proximity
P i it Sensors for
Obstacle Detection
Two Ground Sensors for
Line Following
39 LED
Visualize Sensors
and Interactions
Temperature Sensor
Reset Button
(b)
* Available Only with Wireless Thymio
Figure 1. The Thymio robot and its main components for the wireless- and the USB-connected versions: (a) a rendering of the Thymio
robot (courtesy of Ecole Cantonale d'Art de Lausanne) and (b) a list of key features of the robot. Li-Po: lithium polymer.
March 2017
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
79
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2017
IEEE Robotics & Automation Magazine - March 2017 - Cover1
IEEE Robotics & Automation Magazine - March 2017 - Cover2
IEEE Robotics & Automation Magazine - March 2017 - 1
IEEE Robotics & Automation Magazine - March 2017 - 2
IEEE Robotics & Automation Magazine - March 2017 - 3
IEEE Robotics & Automation Magazine - March 2017 - 4
IEEE Robotics & Automation Magazine - March 2017 - 5
IEEE Robotics & Automation Magazine - March 2017 - 6
IEEE Robotics & Automation Magazine - March 2017 - 7
IEEE Robotics & Automation Magazine - March 2017 - 8
IEEE Robotics & Automation Magazine - March 2017 - 9
IEEE Robotics & Automation Magazine - March 2017 - 10
IEEE Robotics & Automation Magazine - March 2017 - 11
IEEE Robotics & Automation Magazine - March 2017 - 12
IEEE Robotics & Automation Magazine - March 2017 - 13
IEEE Robotics & Automation Magazine - March 2017 - 14
IEEE Robotics & Automation Magazine - March 2017 - 15
IEEE Robotics & Automation Magazine - March 2017 - 16
IEEE Robotics & Automation Magazine - March 2017 - 17
IEEE Robotics & Automation Magazine - March 2017 - 18
IEEE Robotics & Automation Magazine - March 2017 - 19
IEEE Robotics & Automation Magazine - March 2017 - 20
IEEE Robotics & Automation Magazine - March 2017 - 21
IEEE Robotics & Automation Magazine - March 2017 - 22
IEEE Robotics & Automation Magazine - March 2017 - 23
IEEE Robotics & Automation Magazine - March 2017 - 24
IEEE Robotics & Automation Magazine - March 2017 - 25
IEEE Robotics & Automation Magazine - March 2017 - 26
IEEE Robotics & Automation Magazine - March 2017 - 27
IEEE Robotics & Automation Magazine - March 2017 - 28
IEEE Robotics & Automation Magazine - March 2017 - 29
IEEE Robotics & Automation Magazine - March 2017 - 30
IEEE Robotics & Automation Magazine - March 2017 - 31
IEEE Robotics & Automation Magazine - March 2017 - 32
IEEE Robotics & Automation Magazine - March 2017 - 33
IEEE Robotics & Automation Magazine - March 2017 - 34
IEEE Robotics & Automation Magazine - March 2017 - 35
IEEE Robotics & Automation Magazine - March 2017 - 36
IEEE Robotics & Automation Magazine - March 2017 - 37
IEEE Robotics & Automation Magazine - March 2017 - 38
IEEE Robotics & Automation Magazine - March 2017 - 39
IEEE Robotics & Automation Magazine - March 2017 - 40
IEEE Robotics & Automation Magazine - March 2017 - 41
IEEE Robotics & Automation Magazine - March 2017 - 42
IEEE Robotics & Automation Magazine - March 2017 - 43
IEEE Robotics & Automation Magazine - March 2017 - 44
IEEE Robotics & Automation Magazine - March 2017 - 45
IEEE Robotics & Automation Magazine - March 2017 - 46
IEEE Robotics & Automation Magazine - March 2017 - 47
IEEE Robotics & Automation Magazine - March 2017 - 48
IEEE Robotics & Automation Magazine - March 2017 - 49
IEEE Robotics & Automation Magazine - March 2017 - 50
IEEE Robotics & Automation Magazine - March 2017 - 51
IEEE Robotics & Automation Magazine - March 2017 - 52
IEEE Robotics & Automation Magazine - March 2017 - 53
IEEE Robotics & Automation Magazine - March 2017 - 54
IEEE Robotics & Automation Magazine - March 2017 - 55
IEEE Robotics & Automation Magazine - March 2017 - 56
IEEE Robotics & Automation Magazine - March 2017 - 57
IEEE Robotics & Automation Magazine - March 2017 - 58
IEEE Robotics & Automation Magazine - March 2017 - 59
IEEE Robotics & Automation Magazine - March 2017 - 60
IEEE Robotics & Automation Magazine - March 2017 - 61
IEEE Robotics & Automation Magazine - March 2017 - 62
IEEE Robotics & Automation Magazine - March 2017 - 63
IEEE Robotics & Automation Magazine - March 2017 - 64
IEEE Robotics & Automation Magazine - March 2017 - 65
IEEE Robotics & Automation Magazine - March 2017 - 66
IEEE Robotics & Automation Magazine - March 2017 - 67
IEEE Robotics & Automation Magazine - March 2017 - 68
IEEE Robotics & Automation Magazine - March 2017 - 69
IEEE Robotics & Automation Magazine - March 2017 - 70
IEEE Robotics & Automation Magazine - March 2017 - 71
IEEE Robotics & Automation Magazine - March 2017 - 72
IEEE Robotics & Automation Magazine - March 2017 - 73
IEEE Robotics & Automation Magazine - March 2017 - 74
IEEE Robotics & Automation Magazine - March 2017 - 75
IEEE Robotics & Automation Magazine - March 2017 - 76
IEEE Robotics & Automation Magazine - March 2017 - 77
IEEE Robotics & Automation Magazine - March 2017 - 78
IEEE Robotics & Automation Magazine - March 2017 - 79
IEEE Robotics & Automation Magazine - March 2017 - 80
IEEE Robotics & Automation Magazine - March 2017 - 81
IEEE Robotics & Automation Magazine - March 2017 - 82
IEEE Robotics & Automation Magazine - March 2017 - 83
IEEE Robotics & Automation Magazine - March 2017 - 84
IEEE Robotics & Automation Magazine - March 2017 - 85
IEEE Robotics & Automation Magazine - March 2017 - 86
IEEE Robotics & Automation Magazine - March 2017 - 87
IEEE Robotics & Automation Magazine - March 2017 - 88
IEEE Robotics & Automation Magazine - March 2017 - 89
IEEE Robotics & Automation Magazine - March 2017 - 90
IEEE Robotics & Automation Magazine - March 2017 - 91
IEEE Robotics & Automation Magazine - March 2017 - 92
IEEE Robotics & Automation Magazine - March 2017 - 93
IEEE Robotics & Automation Magazine - March 2017 - 94
IEEE Robotics & Automation Magazine - March 2017 - 95
IEEE Robotics & Automation Magazine - March 2017 - 96
IEEE Robotics & Automation Magazine - March 2017 - 97
IEEE Robotics & Automation Magazine - March 2017 - 98
IEEE Robotics & Automation Magazine - March 2017 - 99
IEEE Robotics & Automation Magazine - March 2017 - 100
IEEE Robotics & Automation Magazine - March 2017 - 101
IEEE Robotics & Automation Magazine - March 2017 - 102
IEEE Robotics & Automation Magazine - March 2017 - 103
IEEE Robotics & Automation Magazine - March 2017 - 104
IEEE Robotics & Automation Magazine - March 2017 - 105
IEEE Robotics & Automation Magazine - March 2017 - 106
IEEE Robotics & Automation Magazine - March 2017 - 107
IEEE Robotics & Automation Magazine - March 2017 - 108
IEEE Robotics & Automation Magazine - March 2017 - 109
IEEE Robotics & Automation Magazine - March 2017 - 110
IEEE Robotics & Automation Magazine - March 2017 - 111
IEEE Robotics & Automation Magazine - March 2017 - 112
IEEE Robotics & Automation Magazine - March 2017 - 113
IEEE Robotics & Automation Magazine - March 2017 - 114
IEEE Robotics & Automation Magazine - March 2017 - 115
IEEE Robotics & Automation Magazine - March 2017 - 116
IEEE Robotics & Automation Magazine - March 2017 - Cover3
IEEE Robotics & Automation Magazine - March 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com