IEEE Robotics & Automation Magazine - March 2022 - 100
●
In-situ testing: where R is assessed
against the actual working of the system
in a real-world environment [3].
Again, there are many variations and
options here ranging from the " certain "
(in the case of formal proof) to the stochastic.
The TC aims to encompass
work across all these areas as well as to
link and support aspects such as transparency
[11] and modularity [6], [9].
This TC is
concerned with
the development
of tools and
techniques to
verify autonomous
systems even in
such unconstrained
and unstructured
environments.
What Is " Autonomy " ?
Essentially, autonomy is the ability (and
often requirement) of a system to make
its own decisions and take its own
actions. This TC takes an inclusive view
on system autonomy, covering full
autonomy, where decision making and
action is fully
within the system's
software
(and so assessment
of why
decisions are
made becomes
crucial); adaptive
systems,
where decision
making and ac -
tion are driven
by (often continuous)
interactions
with the
environment;
and automated
systems, where
decision making
and action are prescripted, and so
on. Which form of decision making is
utilized will also have a strong impact
on the effectiveness of any of the
ve rification techniques to which it can
be applied.
Why Is This Important?
As the range of systems that are
expected to act on their own expands,
the need for verification of these
autonomous systems becomes more
important. When there is a " human in
the loop, " i.e., a human providing oversight
and control of a system, the key
decisions about the system can be delegated
to that human, leaving the system
analysis to address issues such as
reliability. However, once there is a
need for the system to make key decisions,
much more evidence and confidence
in these types of systems will be
required. Developing the ability to
establish and provide this evidence is
then essential not only for engineers
but also for all stakeholders such as regulators,
the public, and governments,
and so for this TC.
If the abilities of systems and the
environments in which they are to
work remain constrained, then realistic
boundaries for system behaviors can be
provided. However, once autonomous
systems are deployed in hard to predict
or unknown environments and we
expect them to make key, and sometimes
(safety, mission, security) critical
decisions, then a much stronger analysis
is required. In addition, what
requirements might be assessed depend
crucially on what is known of the system
and its environment. Traditionally,
it has been assumed that we can assess
(before deployment) all potential
issues/concerns and mitigate against
these, which might be the case in
highly controlled, closed environments.
However, with autonomous systems
increasingly being used in open,
uncontrolled environments and with
internal, software behavior able to
change in various ways, our ability to
predict " everything that might go
wrong " is severely limited. Furthermore,
stochastic models of complex,
unknown environments can never be
complete and may have hard to predict
errors. Therefore, this TC is concerned
https://www.ieee-ras.org/verificationof-autonomous-systems
https://www.ieee-ras.org/verificationof-autonomous-systems
IEEE Robotics & Automation Magazine - March 2022
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2022
Contents
IEEE Robotics & Automation Magazine - March 2022 - Cover1
IEEE Robotics & Automation Magazine - March 2022 - Cover2
IEEE Robotics & Automation Magazine - March 2022 - Contents
IEEE Robotics & Automation Magazine - March 2022 - 2
IEEE Robotics & Automation Magazine - March 2022 - 3
IEEE Robotics & Automation Magazine - March 2022 - 4
IEEE Robotics & Automation Magazine - March 2022 - 5
IEEE Robotics & Automation Magazine - March 2022 - 6
IEEE Robotics & Automation Magazine - March 2022 - 7
IEEE Robotics & Automation Magazine - March 2022 - 8
IEEE Robotics & Automation Magazine - March 2022 - 9
IEEE Robotics & Automation Magazine - March 2022 - 10
IEEE Robotics & Automation Magazine - March 2022 - 11
IEEE Robotics & Automation Magazine - March 2022 - 12
IEEE Robotics & Automation Magazine - March 2022 - 13
IEEE Robotics & Automation Magazine - March 2022 - 14
IEEE Robotics & Automation Magazine - March 2022 - 15
IEEE Robotics & Automation Magazine - March 2022 - 16
IEEE Robotics & Automation Magazine - March 2022 - 17
IEEE Robotics & Automation Magazine - March 2022 - 18
IEEE Robotics & Automation Magazine - March 2022 - 19
IEEE Robotics & Automation Magazine - March 2022 - 20
IEEE Robotics & Automation Magazine - March 2022 - 21
IEEE Robotics & Automation Magazine - March 2022 - 22
IEEE Robotics & Automation Magazine - March 2022 - 23
IEEE Robotics & Automation Magazine - March 2022 - 24
IEEE Robotics & Automation Magazine - March 2022 - 25
IEEE Robotics & Automation Magazine - March 2022 - 26
IEEE Robotics & Automation Magazine - March 2022 - 27
IEEE Robotics & Automation Magazine - March 2022 - 28
IEEE Robotics & Automation Magazine - March 2022 - 29
IEEE Robotics & Automation Magazine - March 2022 - 30
IEEE Robotics & Automation Magazine - March 2022 - 31
IEEE Robotics & Automation Magazine - March 2022 - 32
IEEE Robotics & Automation Magazine - March 2022 - 33
IEEE Robotics & Automation Magazine - March 2022 - 34
IEEE Robotics & Automation Magazine - March 2022 - 35
IEEE Robotics & Automation Magazine - March 2022 - 36
IEEE Robotics & Automation Magazine - March 2022 - 37
IEEE Robotics & Automation Magazine - March 2022 - 38
IEEE Robotics & Automation Magazine - March 2022 - 39
IEEE Robotics & Automation Magazine - March 2022 - 40
IEEE Robotics & Automation Magazine - March 2022 - 41
IEEE Robotics & Automation Magazine - March 2022 - 42
IEEE Robotics & Automation Magazine - March 2022 - 43
IEEE Robotics & Automation Magazine - March 2022 - 44
IEEE Robotics & Automation Magazine - March 2022 - 45
IEEE Robotics & Automation Magazine - March 2022 - 46
IEEE Robotics & Automation Magazine - March 2022 - 47
IEEE Robotics & Automation Magazine - March 2022 - 48
IEEE Robotics & Automation Magazine - March 2022 - 49
IEEE Robotics & Automation Magazine - March 2022 - 50
IEEE Robotics & Automation Magazine - March 2022 - 51
IEEE Robotics & Automation Magazine - March 2022 - 52
IEEE Robotics & Automation Magazine - March 2022 - 53
IEEE Robotics & Automation Magazine - March 2022 - 54
IEEE Robotics & Automation Magazine - March 2022 - 55
IEEE Robotics & Automation Magazine - March 2022 - 56
IEEE Robotics & Automation Magazine - March 2022 - 57
IEEE Robotics & Automation Magazine - March 2022 - 58
IEEE Robotics & Automation Magazine - March 2022 - 59
IEEE Robotics & Automation Magazine - March 2022 - 60
IEEE Robotics & Automation Magazine - March 2022 - 61
IEEE Robotics & Automation Magazine - March 2022 - 62
IEEE Robotics & Automation Magazine - March 2022 - 63
IEEE Robotics & Automation Magazine - March 2022 - 64
IEEE Robotics & Automation Magazine - March 2022 - 65
IEEE Robotics & Automation Magazine - March 2022 - 66
IEEE Robotics & Automation Magazine - March 2022 - 67
IEEE Robotics & Automation Magazine - March 2022 - 68
IEEE Robotics & Automation Magazine - March 2022 - 69
IEEE Robotics & Automation Magazine - March 2022 - 70
IEEE Robotics & Automation Magazine - March 2022 - 71
IEEE Robotics & Automation Magazine - March 2022 - 72
IEEE Robotics & Automation Magazine - March 2022 - 73
IEEE Robotics & Automation Magazine - March 2022 - 74
IEEE Robotics & Automation Magazine - March 2022 - 75
IEEE Robotics & Automation Magazine - March 2022 - 76
IEEE Robotics & Automation Magazine - March 2022 - 77
IEEE Robotics & Automation Magazine - March 2022 - 78
IEEE Robotics & Automation Magazine - March 2022 - 79
IEEE Robotics & Automation Magazine - March 2022 - 80
IEEE Robotics & Automation Magazine - March 2022 - 81
IEEE Robotics & Automation Magazine - March 2022 - 82
IEEE Robotics & Automation Magazine - March 2022 - 83
IEEE Robotics & Automation Magazine - March 2022 - 84
IEEE Robotics & Automation Magazine - March 2022 - 85
IEEE Robotics & Automation Magazine - March 2022 - 86
IEEE Robotics & Automation Magazine - March 2022 - 87
IEEE Robotics & Automation Magazine - March 2022 - 88
IEEE Robotics & Automation Magazine - March 2022 - 89
IEEE Robotics & Automation Magazine - March 2022 - 90
IEEE Robotics & Automation Magazine - March 2022 - 91
IEEE Robotics & Automation Magazine - March 2022 - 92
IEEE Robotics & Automation Magazine - March 2022 - 93
IEEE Robotics & Automation Magazine - March 2022 - 94
IEEE Robotics & Automation Magazine - March 2022 - 95
IEEE Robotics & Automation Magazine - March 2022 - 96
IEEE Robotics & Automation Magazine - March 2022 - 97
IEEE Robotics & Automation Magazine - March 2022 - 98
IEEE Robotics & Automation Magazine - March 2022 - 99
IEEE Robotics & Automation Magazine - March 2022 - 100
IEEE Robotics & Automation Magazine - March 2022 - 101
IEEE Robotics & Automation Magazine - March 2022 - 102
IEEE Robotics & Automation Magazine - March 2022 - 103
IEEE Robotics & Automation Magazine - March 2022 - 104
IEEE Robotics & Automation Magazine - March 2022 - 105
IEEE Robotics & Automation Magazine - March 2022 - 106
IEEE Robotics & Automation Magazine - March 2022 - 107
IEEE Robotics & Automation Magazine - March 2022 - 108
IEEE Robotics & Automation Magazine - March 2022 - 109
IEEE Robotics & Automation Magazine - March 2022 - 110
IEEE Robotics & Automation Magazine - March 2022 - 111
IEEE Robotics & Automation Magazine - March 2022 - 112
IEEE Robotics & Automation Magazine - March 2022 - 113
IEEE Robotics & Automation Magazine - March 2022 - 114
IEEE Robotics & Automation Magazine - March 2022 - 115
IEEE Robotics & Automation Magazine - March 2022 - 116
IEEE Robotics & Automation Magazine - March 2022 - 117
IEEE Robotics & Automation Magazine - March 2022 - 118
IEEE Robotics & Automation Magazine - March 2022 - 119
IEEE Robotics & Automation Magazine - March 2022 - 120
IEEE Robotics & Automation Magazine - March 2022 - 121
IEEE Robotics & Automation Magazine - March 2022 - 122
IEEE Robotics & Automation Magazine - March 2022 - 123
IEEE Robotics & Automation Magazine - March 2022 - 124
IEEE Robotics & Automation Magazine - March 2022 - Cover3
IEEE Robotics & Automation Magazine - March 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com