IEEE Robotics & Automation Magazine - March 2023 - 7
F ROM THE GU E S T ED I T O R S
Enabling Homecare With Robotic Technologies
By Weihua Sheng , Hesheng Wang , Yingzi Lin , Yasuhisa Hirata , and Stefano Mazzoleni
The home health-care industry is under
growing pressure
to deliver
services
more effectively to meet the increasing
demand from care recipients, particularly
the elderly population. It is estimated
that U.S. home health-care expenditures
will rise from US$108.8 billion in 2019
to US$186.8 billion in 2027 [1]. A simultaneous
ongoing shortage of physicians,
registered nurses, certified
nursing assistants,
and social workers has
created a major service
delivery gap in the home
health-care industry,
especially in rural areas
where timely access to
quality health-care services
is very limited [2].
The recent COVID-19
pandemic exacerbated
this problem as it isolated
many care recipients from
their caregivers or friends.
Providing efficient and
cost- effective homecare
requires major changes
in the ways that providers
gather
sensors, process the data for diagnosis,
and provide interventions for health-care
delivery, therefore enabling individualized
care that promotes independence
and safety of the care recipients. For
health-care workers, these technologies
will improve their productivity and
free them to address the more complex
aspects of their work.
This special issue aims
"
A GAME-BASED
ASSESSMENT
PLATFORM
ENGAGES THE USER
AND PERFORMS
AUTOMATED
EVALUATION OF
ARM AND HAND
FUNCTION AND
THEIR EVOLUTION
OVER TIME.
„
information
from and deliver care
services to homebound care recipients.
Robotic technologies are in a unique
position to achieve this goal. Research
in homecare robots has been attracting
great interest
in recent years. Robotbased
homecare technologies can collect
health-related data with advanced
Digital Object Identifier 10.1109/MRA.2023.3237439
Date of current version: 22 March 2023
1070-9932/23©2023IEEE
to present the recent
research advances in
robot-assisted home health
care, ident ify future
research directions, and
promote new research
endeavors in this emerging
field. What follows is
an overview of the seven
articles accepted in this
special issue.
The article by Ankit
A. Ravankar et al. [A1]
presents a general framework
for future welfare
facilities with a new
concept of the living lab,
which is developed to
push the health-care 4.0
concept one step closer
to reality under the ongoing project
" Moonshot R&D " in Japan. The framework
integrates an adaptable artificial
intelligence (AI) that senses users'
expressions, surroundings and daily conditions
and provides the most appropriate
support.
With a goal of addressing the specific
needs of wheelchair users in their
everyday life, Morbidi et al. [A2] have
developed innovative assistive robotic
technologies within the framework of
the " Assistive Devices for Empowering
Disabled People Through Robotic Technologies "
project. The article focuses on
the design, implementation, and experimental
validation, via large-scale clinical
trials, of two complementary smart
wheelchairs and a wheelchair-driving
simulator based on virtual reality.
Deng et al. [A3] have provided a new
solution to long-term visual simultaneous
localization and mapping (SLAM),
a fundamental research problem in
robotics that enables mobile homecare
robots to successfully navigate in complex
indoor environments. Their method
combines map prediction and dynamics
removal, which results in an excellent
localization performance for intelligent
wheelchairs.
The article by Li et al. [A4] addresses
the issue of bandaging using a robotic
arm, which has the potential to develop
automated
home-based
daily wound
care. A method of force-position decoupling
control strategy was developed to
achieve the full process of bandage tension
control with bandaging trajectory
adjustment and following.
Garzo et al. [A5] have developed
ArmAssist, a telerehabilitation platform
aiming to help poststroke subjects
maintain the rehabilitation of the upper
limbs at home. ArmAssist consists of
robotic modules with multiple sensors to
train and measure the users' voluntary
movements. A game-based assessment
(continued on page 100)
MARCH 2023 IEEE ROBOTICS & AUTOMATION MAGAZINE
7
https://orcid.org/0000-0002-5931-0471
https://orcid.org/0000-0003-2214-0373
https://orcid.org/0000-0001-7120-4359
https://orcid.org/0000-0002-9528-3239
https://orcid.org/0000-0002-9959-1634
IEEE Robotics & Automation Magazine - March 2023
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - March 2023
Contents
IEEE Robotics & Automation Magazine - March 2023 - Cover1
IEEE Robotics & Automation Magazine - March 2023 - Cover2
IEEE Robotics & Automation Magazine - March 2023 - Contents
IEEE Robotics & Automation Magazine - March 2023 - 2
IEEE Robotics & Automation Magazine - March 2023 - 3
IEEE Robotics & Automation Magazine - March 2023 - 4
IEEE Robotics & Automation Magazine - March 2023 - 5
IEEE Robotics & Automation Magazine - March 2023 - 6
IEEE Robotics & Automation Magazine - March 2023 - 7
IEEE Robotics & Automation Magazine - March 2023 - 8
IEEE Robotics & Automation Magazine - March 2023 - 9
IEEE Robotics & Automation Magazine - March 2023 - 10
IEEE Robotics & Automation Magazine - March 2023 - 11
IEEE Robotics & Automation Magazine - March 2023 - 12
IEEE Robotics & Automation Magazine - March 2023 - 13
IEEE Robotics & Automation Magazine - March 2023 - 14
IEEE Robotics & Automation Magazine - March 2023 - 15
IEEE Robotics & Automation Magazine - March 2023 - 16
IEEE Robotics & Automation Magazine - March 2023 - 17
IEEE Robotics & Automation Magazine - March 2023 - 18
IEEE Robotics & Automation Magazine - March 2023 - 19
IEEE Robotics & Automation Magazine - March 2023 - 20
IEEE Robotics & Automation Magazine - March 2023 - 21
IEEE Robotics & Automation Magazine - March 2023 - 22
IEEE Robotics & Automation Magazine - March 2023 - 23
IEEE Robotics & Automation Magazine - March 2023 - 24
IEEE Robotics & Automation Magazine - March 2023 - 25
IEEE Robotics & Automation Magazine - March 2023 - 26
IEEE Robotics & Automation Magazine - March 2023 - 27
IEEE Robotics & Automation Magazine - March 2023 - 28
IEEE Robotics & Automation Magazine - March 2023 - 29
IEEE Robotics & Automation Magazine - March 2023 - 30
IEEE Robotics & Automation Magazine - March 2023 - 31
IEEE Robotics & Automation Magazine - March 2023 - 32
IEEE Robotics & Automation Magazine - March 2023 - 33
IEEE Robotics & Automation Magazine - March 2023 - 34
IEEE Robotics & Automation Magazine - March 2023 - 35
IEEE Robotics & Automation Magazine - March 2023 - 36
IEEE Robotics & Automation Magazine - March 2023 - 37
IEEE Robotics & Automation Magazine - March 2023 - 38
IEEE Robotics & Automation Magazine - March 2023 - 39
IEEE Robotics & Automation Magazine - March 2023 - 40
IEEE Robotics & Automation Magazine - March 2023 - 41
IEEE Robotics & Automation Magazine - March 2023 - 42
IEEE Robotics & Automation Magazine - March 2023 - 43
IEEE Robotics & Automation Magazine - March 2023 - 44
IEEE Robotics & Automation Magazine - March 2023 - 45
IEEE Robotics & Automation Magazine - March 2023 - 46
IEEE Robotics & Automation Magazine - March 2023 - 47
IEEE Robotics & Automation Magazine - March 2023 - 48
IEEE Robotics & Automation Magazine - March 2023 - 49
IEEE Robotics & Automation Magazine - March 2023 - 50
IEEE Robotics & Automation Magazine - March 2023 - 51
IEEE Robotics & Automation Magazine - March 2023 - 52
IEEE Robotics & Automation Magazine - March 2023 - 53
IEEE Robotics & Automation Magazine - March 2023 - 54
IEEE Robotics & Automation Magazine - March 2023 - 55
IEEE Robotics & Automation Magazine - March 2023 - 56
IEEE Robotics & Automation Magazine - March 2023 - 57
IEEE Robotics & Automation Magazine - March 2023 - 58
IEEE Robotics & Automation Magazine - March 2023 - 59
IEEE Robotics & Automation Magazine - March 2023 - 60
IEEE Robotics & Automation Magazine - March 2023 - 61
IEEE Robotics & Automation Magazine - March 2023 - 62
IEEE Robotics & Automation Magazine - March 2023 - 63
IEEE Robotics & Automation Magazine - March 2023 - 64
IEEE Robotics & Automation Magazine - March 2023 - 65
IEEE Robotics & Automation Magazine - March 2023 - 66
IEEE Robotics & Automation Magazine - March 2023 - 67
IEEE Robotics & Automation Magazine - March 2023 - 68
IEEE Robotics & Automation Magazine - March 2023 - 69
IEEE Robotics & Automation Magazine - March 2023 - 70
IEEE Robotics & Automation Magazine - March 2023 - 71
IEEE Robotics & Automation Magazine - March 2023 - 72
IEEE Robotics & Automation Magazine - March 2023 - 73
IEEE Robotics & Automation Magazine - March 2023 - 74
IEEE Robotics & Automation Magazine - March 2023 - 75
IEEE Robotics & Automation Magazine - March 2023 - 76
IEEE Robotics & Automation Magazine - March 2023 - 77
IEEE Robotics & Automation Magazine - March 2023 - 78
IEEE Robotics & Automation Magazine - March 2023 - 79
IEEE Robotics & Automation Magazine - March 2023 - 80
IEEE Robotics & Automation Magazine - March 2023 - 81
IEEE Robotics & Automation Magazine - March 2023 - 82
IEEE Robotics & Automation Magazine - March 2023 - 83
IEEE Robotics & Automation Magazine - March 2023 - 84
IEEE Robotics & Automation Magazine - March 2023 - 85
IEEE Robotics & Automation Magazine - March 2023 - 86
IEEE Robotics & Automation Magazine - March 2023 - 87
IEEE Robotics & Automation Magazine - March 2023 - 88
IEEE Robotics & Automation Magazine - March 2023 - 89
IEEE Robotics & Automation Magazine - March 2023 - 90
IEEE Robotics & Automation Magazine - March 2023 - 91
IEEE Robotics & Automation Magazine - March 2023 - 92
IEEE Robotics & Automation Magazine - March 2023 - 93
IEEE Robotics & Automation Magazine - March 2023 - 94
IEEE Robotics & Automation Magazine - March 2023 - 95
IEEE Robotics & Automation Magazine - March 2023 - 96
IEEE Robotics & Automation Magazine - March 2023 - 97
IEEE Robotics & Automation Magazine - March 2023 - 98
IEEE Robotics & Automation Magazine - March 2023 - 99
IEEE Robotics & Automation Magazine - March 2023 - 100
IEEE Robotics & Automation Magazine - March 2023 - 101
IEEE Robotics & Automation Magazine - March 2023 - 102
IEEE Robotics & Automation Magazine - March 2023 - 103
IEEE Robotics & Automation Magazine - March 2023 - 104
IEEE Robotics & Automation Magazine - March 2023 - 105
IEEE Robotics & Automation Magazine - March 2023 - 106
IEEE Robotics & Automation Magazine - March 2023 - 107
IEEE Robotics & Automation Magazine - March 2023 - 108
IEEE Robotics & Automation Magazine - March 2023 - 109
IEEE Robotics & Automation Magazine - March 2023 - 110
IEEE Robotics & Automation Magazine - March 2023 - 111
IEEE Robotics & Automation Magazine - March 2023 - 112
IEEE Robotics & Automation Magazine - March 2023 - 113
IEEE Robotics & Automation Magazine - March 2023 - 114
IEEE Robotics & Automation Magazine - March 2023 - 115
IEEE Robotics & Automation Magazine - March 2023 - 116
IEEE Robotics & Automation Magazine - March 2023 - 117
IEEE Robotics & Automation Magazine - March 2023 - 118
IEEE Robotics & Automation Magazine - March 2023 - 119
IEEE Robotics & Automation Magazine - March 2023 - 120
IEEE Robotics & Automation Magazine - March 2023 - 121
IEEE Robotics & Automation Magazine - March 2023 - 122
IEEE Robotics & Automation Magazine - March 2023 - 123
IEEE Robotics & Automation Magazine - March 2023 - 124
IEEE Robotics & Automation Magazine - March 2023 - 125
IEEE Robotics & Automation Magazine - March 2023 - 126
IEEE Robotics & Automation Magazine - March 2023 - 127
IEEE Robotics & Automation Magazine - March 2023 - 128
IEEE Robotics & Automation Magazine - March 2023 - Cover3
IEEE Robotics & Automation Magazine - March 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com