IEEE Robotics & Automation Magazine - September 2010 - 53
and then using self-disassembly to remove
the extra modules to form a specific shape.
light and compact and that configures
itself into a desired form at fine granularity. Our current system functions as a
Summary and Future Outlook
Smart Pebbles system. There is a suite of
interesting challenges that have to be
We have presented a detailed retrospecovercome to reduce the size of this systive on modular robots and discussed contem further from 1-cm scale to 1-mm
nections between modular robots and
scale and realize the dream of Smart Sand.
programmable matter. This field has seen
New technology will have to be devela great deal of creativity and innovation at
oped to package computation, sensing,
the level of designing physical systems
actuation, communication, and power in
capable of matching shape to function and
a 1-mm scale module. New fabrication
algorithms that achieve this capability.
technology will have to be developed to
The success of these projects rests on the
fabricate such models rapidly and in costconvergence of innovation in hardware Figure 17. A initial 3 3 5 block of
effective ways. New supporting algorithms
design and materials for creating the basic modules was used to form this
that are scalable and matched to the propbuilding blocks, information distribution 60-mm-tall humanoid through the
erties of the hardware would have to be
for programming the interaction between self-disassembly process.
the blocks, and control. Most current systems have dimensions put in place. Ultimately, these advances will lead to the creation
on the order of centimeters, yet pack computation, communi- of desktop-scale 3-D fabrication technology of electrically and
cation, sensing, and power transfer capabilities into their form mechanically active recyclable parts for everyday users.
factors. Additionally, these modules operate using distributed algorithms that use a modules ability to observe its current neighbor- Acknowledgments
This work is supported by the Defense Advanced Research
hood and local rules to decide what to do next.
Within this broad space, our own work spans the develop- Projects Agency (DARPA) Programmable Matter and Chemment of several modular self-reconfiguring robot systems. bots programs (Dr. Mitch Zakin, PM) and the U.S. Army
Building on this experience, we identified self-disassembly as a Research Office under grant numbers W911NF-08-1-0228
way of creating shapes out of smart components using a and W911NF-08-C-0060, National Science Foundation (NSF)
subtractive process. The key idea is to create a bag of smart Emerging Frontiers in Research and Innovation (EFRI), Intel,
components that can program their connections in an autono- and the National Defense Science and Engineering Graduate
mous way to organize different shapes. This simplifies the (NDSEG) fellowship program. We also thank Prof. Rob Wood
mechanics of shape creation by eliminating the need for actively and Dr. Ara Knaian.
moving parts. The required actuation mechanism (disconnection) is generally easier, faster, and more robust than actively Keywords
seeking and making connections. The trade-off is two-fold. Modular robots, self-assembling robots, self-disassembling robots,
First, self-disassembling systems must start from a preassembled metamorphic robots.
structure of modules. Second, external forces must be employed
to remove unwanted material from the system. Often, these References
forces can be found in the surrounding environment. For our [1] A. Tison and T. Tayor, Barbapapa, Les Livres du Dragon D'Or, 2003.
first system prototypes, we used gravity to pull unnecessary [2] I. S. Behr, R. H. Wolfe, and R. D. Moore, "Star trek: Deep space nine,"
1994, episode 47 & 48: The Search.
modules away from the final structure.
[3] J. Cameron and W. Wisher, Jr., Terminator 2: Judgment Day, 1991.
A key innovation that enabled the miniaturization of the basic [4] B. Mantlo, B. Budiansky, J. Shooter, M. Higgins, R. Macchio, B. Sienkiewicz,
F. Springer, K. DeMulder, N. Yomtov, and R. Parker, The Transformers.
module for self-disassembly from a 4.5-cm cube to the 1-cm scale
New York: Marvel Comics, 1984.
module has been the development of a small programmable con[5]
T.
Fukuda and S. Nakagawa, "Dynamically reconfigurable robotic
nector capable of 1) holding state without power; 2) switching
system," in Proc. IEEE Int. Conf. Robotics and Automation, Apr. 1988,
states using very short pulses; 3) encoding, transmitting, and
pp. 1581-1586.
decoding messages to neighbors in the structure; and 4) transmit- [6] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, "Self organizaing
robots based on cell structures-cebot," in Proc. IEEE Int. Workshop on
ting power. The functionality of this robot system is driven by
Intelligent Robots, Oct. 1988, pp. 145-150.
two important capabilities: a) making shapes autonomously by
[7] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
disassembly and b) reassembling autonomously a building block.
and G. S. Chirikjian, "Modular self-reconfigurable robot systems: ChalIn this article, we summarized our solution for a) and discuss in
lenges and opportunities for the future," IEEE Robot. Automat. Mag.,
detail our solution for b). We are currently working on completvol. 14, no. 1, pp. 43-52, Mar. 2007.
ing a 50-module platform and on using this platform to evaluate [8] M. Yim, "A reconfigurable modular robot with many modes of locomotion,"
in Proc. JSME Int. Conf. Advanced Mechatronics, 1993, pp. 283-288.
the disassembly and re-assembly algorithms. In the future, we
[9] M. Yim, "New locomotion gaits," in Proc. IEEE Int. Conf. Robotics and
plan to extend resulting robot system with mobility, so that the
Automation (ICRA), 1994, pp. 2508-2514.
objects formed by this method can function as mobile robots.
[10] A. Castano and P. Will, "Mechanical design of a module for reconfiguraOur long-term hope is to create a self-disassembling system
ble robots," in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), 2000, pp. 2203-2209.
that can function analogous to a bag of Smart Sand that will be
SEPTEMBER 2010
IEEE Robotics & Automation Magazine
53
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - September 2010
IEEE Robotics & Automation Magazine - September 2010 - Cover1
IEEE Robotics & Automation Magazine - September 2010 - Cover2
IEEE Robotics & Automation Magazine - September 2010 - 1
IEEE Robotics & Automation Magazine - September 2010 - 2
IEEE Robotics & Automation Magazine - September 2010 - 3
IEEE Robotics & Automation Magazine - September 2010 - 4
IEEE Robotics & Automation Magazine - September 2010 - 5
IEEE Robotics & Automation Magazine - September 2010 - 6
IEEE Robotics & Automation Magazine - September 2010 - 7
IEEE Robotics & Automation Magazine - September 2010 - 8
IEEE Robotics & Automation Magazine - September 2010 - 9
IEEE Robotics & Automation Magazine - September 2010 - 10
IEEE Robotics & Automation Magazine - September 2010 - 11
IEEE Robotics & Automation Magazine - September 2010 - 12
IEEE Robotics & Automation Magazine - September 2010 - 13
IEEE Robotics & Automation Magazine - September 2010 - 14
IEEE Robotics & Automation Magazine - September 2010 - 15
IEEE Robotics & Automation Magazine - September 2010 - 16
IEEE Robotics & Automation Magazine - September 2010 - 17
IEEE Robotics & Automation Magazine - September 2010 - 18
IEEE Robotics & Automation Magazine - September 2010 - 19
IEEE Robotics & Automation Magazine - September 2010 - 20
IEEE Robotics & Automation Magazine - September 2010 - 21
IEEE Robotics & Automation Magazine - September 2010 - 22
IEEE Robotics & Automation Magazine - September 2010 - 23
IEEE Robotics & Automation Magazine - September 2010 - 24
IEEE Robotics & Automation Magazine - September 2010 - 25
IEEE Robotics & Automation Magazine - September 2010 - 26
IEEE Robotics & Automation Magazine - September 2010 - 27
IEEE Robotics & Automation Magazine - September 2010 - 28
IEEE Robotics & Automation Magazine - September 2010 - 29
IEEE Robotics & Automation Magazine - September 2010 - 30
IEEE Robotics & Automation Magazine - September 2010 - 31
IEEE Robotics & Automation Magazine - September 2010 - 32
IEEE Robotics & Automation Magazine - September 2010 - 33
IEEE Robotics & Automation Magazine - September 2010 - 34
IEEE Robotics & Automation Magazine - September 2010 - 35
IEEE Robotics & Automation Magazine - September 2010 - 36
IEEE Robotics & Automation Magazine - September 2010 - 37
IEEE Robotics & Automation Magazine - September 2010 - 38
IEEE Robotics & Automation Magazine - September 2010 - 39
IEEE Robotics & Automation Magazine - September 2010 - 40
IEEE Robotics & Automation Magazine - September 2010 - 41
IEEE Robotics & Automation Magazine - September 2010 - 42
IEEE Robotics & Automation Magazine - September 2010 - 43
IEEE Robotics & Automation Magazine - September 2010 - 44
IEEE Robotics & Automation Magazine - September 2010 - 45
IEEE Robotics & Automation Magazine - September 2010 - 46
IEEE Robotics & Automation Magazine - September 2010 - 47
IEEE Robotics & Automation Magazine - September 2010 - 48
IEEE Robotics & Automation Magazine - September 2010 - 49
IEEE Robotics & Automation Magazine - September 2010 - 50
IEEE Robotics & Automation Magazine - September 2010 - 51
IEEE Robotics & Automation Magazine - September 2010 - 52
IEEE Robotics & Automation Magazine - September 2010 - 53
IEEE Robotics & Automation Magazine - September 2010 - 54
IEEE Robotics & Automation Magazine - September 2010 - 55
IEEE Robotics & Automation Magazine - September 2010 - 56
IEEE Robotics & Automation Magazine - September 2010 - 57
IEEE Robotics & Automation Magazine - September 2010 - 58
IEEE Robotics & Automation Magazine - September 2010 - 59
IEEE Robotics & Automation Magazine - September 2010 - 60
IEEE Robotics & Automation Magazine - September 2010 - 61
IEEE Robotics & Automation Magazine - September 2010 - 62
IEEE Robotics & Automation Magazine - September 2010 - 63
IEEE Robotics & Automation Magazine - September 2010 - 64
IEEE Robotics & Automation Magazine - September 2010 - 65
IEEE Robotics & Automation Magazine - September 2010 - 66
IEEE Robotics & Automation Magazine - September 2010 - 67
IEEE Robotics & Automation Magazine - September 2010 - 68
IEEE Robotics & Automation Magazine - September 2010 - 69
IEEE Robotics & Automation Magazine - September 2010 - 70
IEEE Robotics & Automation Magazine - September 2010 - 71
IEEE Robotics & Automation Magazine - September 2010 - 72
IEEE Robotics & Automation Magazine - September 2010 - 73
IEEE Robotics & Automation Magazine - September 2010 - 74
IEEE Robotics & Automation Magazine - September 2010 - 75
IEEE Robotics & Automation Magazine - September 2010 - 76
IEEE Robotics & Automation Magazine - September 2010 - 77
IEEE Robotics & Automation Magazine - September 2010 - 78
IEEE Robotics & Automation Magazine - September 2010 - 79
IEEE Robotics & Automation Magazine - September 2010 - 80
IEEE Robotics & Automation Magazine - September 2010 - 81
IEEE Robotics & Automation Magazine - September 2010 - 82
IEEE Robotics & Automation Magazine - September 2010 - 83
IEEE Robotics & Automation Magazine - September 2010 - 84
IEEE Robotics & Automation Magazine - September 2010 - 85
IEEE Robotics & Automation Magazine - September 2010 - 86
IEEE Robotics & Automation Magazine - September 2010 - 87
IEEE Robotics & Automation Magazine - September 2010 - 88
IEEE Robotics & Automation Magazine - September 2010 - 89
IEEE Robotics & Automation Magazine - September 2010 - 90
IEEE Robotics & Automation Magazine - September 2010 - 91
IEEE Robotics & Automation Magazine - September 2010 - 92
IEEE Robotics & Automation Magazine - September 2010 - 93
IEEE Robotics & Automation Magazine - September 2010 - 94
IEEE Robotics & Automation Magazine - September 2010 - 95
IEEE Robotics & Automation Magazine - September 2010 - 96
IEEE Robotics & Automation Magazine - September 2010 - 97
IEEE Robotics & Automation Magazine - September 2010 - 98
IEEE Robotics & Automation Magazine - September 2010 - 99
IEEE Robotics & Automation Magazine - September 2010 - 100
IEEE Robotics & Automation Magazine - September 2010 - 101
IEEE Robotics & Automation Magazine - September 2010 - 102
IEEE Robotics & Automation Magazine - September 2010 - 103
IEEE Robotics & Automation Magazine - September 2010 - 104
IEEE Robotics & Automation Magazine - September 2010 - Cover3
IEEE Robotics & Automation Magazine - September 2010 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com