IEEE Robotics & Automation Magazine - September 2011 - 62

and [29] indicate that the best performance is obtained
when geometry-using abstractions are used in combination with the lazy high-level search. In fact, for the coverage formula with seven temporal operators, the resulting
value is ten times close to the speedup value. For further
details, the readers are referred to [29].
The proposed ideas can also be used directly for safety
analysis of hybrid and robotic system involving LTL specifications. In fact, the first instantiation of the framework in [27]
has been used for safety falsification of hybrid systems with
LTL specifications. Falsification studies the following problem:
"Can a feasible trajectory for the system be constructed such
that the trajectory violates a given safety condition?" Such a
trajectory is called a counterexample trajectory. The safety
conditions assert that nothing wrong happens to the system.
Falsification is often the focus of model checking in industrial
applications [74]. Experience with industrial formal verification has shown that the ability to exhibit counterexample trajectories is often the most useful part of formal verification,
since it provides designers with scenarios that they did not
consider possible [75].
An instantiation of the multilayered synergistic framework
has been used for reachability-based falsification problems
involving hybrid systems with a large number of discrete
modes (up to 1 million) and nonlinear dynamics in each
discrete mode in [58]. The approach significantly outperforms
single-layered approaches (by orders of magnitude).
The work on reachability-based falsification for hybrid
systems in [58] has inspired an instantiation of the multilayered synergistic planning paradigm for solving traditional motion planning problems in [59]. The approach
treats the motion planning problem as a search problem in
a hybrid space (consisting of both continuous and discrete
components) instead of a purely continuous space. The
continuous search is conducted in the state space of the
system. The discrete search is conducted over an abstraction formed by decomposing the workspace of the robot
using the geometry of the environment. The approach is
shown to outperform the existing single-layered samplingbased planners by up to two orders of magnitude.

variance in performance results. As part of our ongoing
research, we are investigating this issue. There are several
possible directions for future research. First, the specifications in [28] and [29] are described over the workspace of
the robot. Extensions of the proposed ideas to problem
instances involving specifications in the state space of the
robotic system should be investigated. Second, as part of
our current work, we have advocated the use of geometrybased abstractions. Further significant improvements in
performance could be obtained by taking into account the
dynamics of the system. It may be possible to improve the
performance of the approach even further by using predesigned controllers in the low-level search layer. A third
direction of research is on extending the framework to
motion planning with optimal cost trajectories. Extension
of the framework to a broader class of hybrid and robotic
systems with a larger number of discrete modes also
remains an area for future research.
Acknowledgments
We thank Y. Lustig and E. Plaku for many useful comments
and suggestions. The research leading to this work was supported in part by NSF CCF 1018798, NSF IIS 0713623, NSF
DUE 0920721, U.S. ARL W911NF-09-1-0383, NSF EIA0216467, and a partnership among Rice University, Sun
Microsystems, and Sigma Solutions.
References
[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. Cambridge MA: MIT Press, 2005.
[2] S. M. LaValle, Planning Algorithms, 1st ed. Cambridge, U.K.:
Cambridge Univ. Press, 2006.
[3] R. E. Fikes and N. J. Nilsson, "STRIPS: A new approach to the application of theorem proving to problem solving," Artif. Intell., vol. 2, no. 3-4,
pp. 189-208, 1971.
[4] M. Gelfond and V. Lifschitz, "Action languages," Electron. Trans. AI,
vol. 2, no. 3-4, pp. 193-210, 1998.
[5] D. McDermott and the AIPS-98 Planning Competition. (1998).
PDDL-The planning domain definition language. [Online]. Available:
www.cs.yale.edu/homes/dvm

Discussion
In this article, an approach for solving motion planning problems involving mobile robots with nonlinear hybrid dynamics and finite geometry, obstacles in the workspace, and highlevel temporal goals has been described. The approach uses
an instantiation of the multilayered synergistic framework
proposed in [27] while addressing two key issues: the construction of the discrete abstraction and its efficient exploration in the high-level search layer. On the basis of the
experimental results, the use of geometry for the construction
of the discrete abstraction is advocated [28], [29]. For the best
performance, it is also recommended to explore such abstractions using efficient high-level search techniques.
As we discussed in the "Experiments" section, an
important area of concern in our current work is the high
62

*

IEEE ROBOTICS & AUTOMATION MAGAZINE

*

SEPTEMBER 2011

[6] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory
and Practice. San Mateo, CA: Morgan Kaufmann, 2004.
[7] K. Hauser and J.-C. Latombe, "Integrating task and PRM motion
planning," in Proc. Int. Conf. Automated Planning and Scheduling, Workshop on Bridging the Gap Between Task and Motion Planning, 2009.
[8] L. P. Kaelbling and T. Lozano-Perez, "Hierarchical task and motion
planning in the now," in Proc. IEEE Int. Conf. Robotics and Automation,
Workshop on Mobile Manipulation, 2010, pp. 1470-1477.
[9] E. Plaku and G. D. Hager, "Sampling-based motion and symbolic
action planning with geometric and differential constraints," in Proc. IEEE Int.
Conf. Robotics and Automation, Anchorage, AK, 2010, pp. 5002-5008.
[10] J. Wolfe, B. Marthi, and S. J. Russell, "Combined task and motion
planning for mobile manipulation," in Proc. Int. Conf. Automated Planning and Scheduling, R. I. Brafman, H. Geffner, J. Hoffmann, and H. A.
Kautz, Eds., Toronto, ON: AAAI, 2010, pp. 254-258.


http://www.cs.yale.edu/homes/dvm

Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - September 2011

IEEE Robotics & Automation Magazine - September 2011 - Cover1
IEEE Robotics & Automation Magazine - September 2011 - Cover2
IEEE Robotics & Automation Magazine - September 2011 - 1
IEEE Robotics & Automation Magazine - September 2011 - 2
IEEE Robotics & Automation Magazine - September 2011 - 3
IEEE Robotics & Automation Magazine - September 2011 - 4
IEEE Robotics & Automation Magazine - September 2011 - 5
IEEE Robotics & Automation Magazine - September 2011 - 6
IEEE Robotics & Automation Magazine - September 2011 - 7
IEEE Robotics & Automation Magazine - September 2011 - 8
IEEE Robotics & Automation Magazine - September 2011 - 9
IEEE Robotics & Automation Magazine - September 2011 - 10
IEEE Robotics & Automation Magazine - September 2011 - 11
IEEE Robotics & Automation Magazine - September 2011 - 12
IEEE Robotics & Automation Magazine - September 2011 - 13
IEEE Robotics & Automation Magazine - September 2011 - 14
IEEE Robotics & Automation Magazine - September 2011 - 15
IEEE Robotics & Automation Magazine - September 2011 - 16
IEEE Robotics & Automation Magazine - September 2011 - 17
IEEE Robotics & Automation Magazine - September 2011 - 18
IEEE Robotics & Automation Magazine - September 2011 - 19
IEEE Robotics & Automation Magazine - September 2011 - 20
IEEE Robotics & Automation Magazine - September 2011 - 21
IEEE Robotics & Automation Magazine - September 2011 - 22
IEEE Robotics & Automation Magazine - September 2011 - 23
IEEE Robotics & Automation Magazine - September 2011 - 24
IEEE Robotics & Automation Magazine - September 2011 - 25
IEEE Robotics & Automation Magazine - September 2011 - 26
IEEE Robotics & Automation Magazine - September 2011 - 27
IEEE Robotics & Automation Magazine - September 2011 - 28
IEEE Robotics & Automation Magazine - September 2011 - 29
IEEE Robotics & Automation Magazine - September 2011 - 30
IEEE Robotics & Automation Magazine - September 2011 - 31
IEEE Robotics & Automation Magazine - September 2011 - 32
IEEE Robotics & Automation Magazine - September 2011 - 33
IEEE Robotics & Automation Magazine - September 2011 - 34
IEEE Robotics & Automation Magazine - September 2011 - 35
IEEE Robotics & Automation Magazine - September 2011 - 36
IEEE Robotics & Automation Magazine - September 2011 - 37
IEEE Robotics & Automation Magazine - September 2011 - 38
IEEE Robotics & Automation Magazine - September 2011 - 39
IEEE Robotics & Automation Magazine - September 2011 - 40
IEEE Robotics & Automation Magazine - September 2011 - 41
IEEE Robotics & Automation Magazine - September 2011 - 42
IEEE Robotics & Automation Magazine - September 2011 - 43
IEEE Robotics & Automation Magazine - September 2011 - 44
IEEE Robotics & Automation Magazine - September 2011 - 45
IEEE Robotics & Automation Magazine - September 2011 - 46
IEEE Robotics & Automation Magazine - September 2011 - 47
IEEE Robotics & Automation Magazine - September 2011 - 48
IEEE Robotics & Automation Magazine - September 2011 - 49
IEEE Robotics & Automation Magazine - September 2011 - 50
IEEE Robotics & Automation Magazine - September 2011 - 51
IEEE Robotics & Automation Magazine - September 2011 - 52
IEEE Robotics & Automation Magazine - September 2011 - 53
IEEE Robotics & Automation Magazine - September 2011 - 54
IEEE Robotics & Automation Magazine - September 2011 - 55
IEEE Robotics & Automation Magazine - September 2011 - 56
IEEE Robotics & Automation Magazine - September 2011 - 57
IEEE Robotics & Automation Magazine - September 2011 - 58
IEEE Robotics & Automation Magazine - September 2011 - 59
IEEE Robotics & Automation Magazine - September 2011 - 60
IEEE Robotics & Automation Magazine - September 2011 - 61
IEEE Robotics & Automation Magazine - September 2011 - 62
IEEE Robotics & Automation Magazine - September 2011 - 63
IEEE Robotics & Automation Magazine - September 2011 - 64
IEEE Robotics & Automation Magazine - September 2011 - 65
IEEE Robotics & Automation Magazine - September 2011 - 66
IEEE Robotics & Automation Magazine - September 2011 - 67
IEEE Robotics & Automation Magazine - September 2011 - 68
IEEE Robotics & Automation Magazine - September 2011 - 69
IEEE Robotics & Automation Magazine - September 2011 - 70
IEEE Robotics & Automation Magazine - September 2011 - 71
IEEE Robotics & Automation Magazine - September 2011 - 72
IEEE Robotics & Automation Magazine - September 2011 - 73
IEEE Robotics & Automation Magazine - September 2011 - 74
IEEE Robotics & Automation Magazine - September 2011 - 75
IEEE Robotics & Automation Magazine - September 2011 - 76
IEEE Robotics & Automation Magazine - September 2011 - 77
IEEE Robotics & Automation Magazine - September 2011 - 78
IEEE Robotics & Automation Magazine - September 2011 - 79
IEEE Robotics & Automation Magazine - September 2011 - 80
IEEE Robotics & Automation Magazine - September 2011 - 81
IEEE Robotics & Automation Magazine - September 2011 - 82
IEEE Robotics & Automation Magazine - September 2011 - 83
IEEE Robotics & Automation Magazine - September 2011 - 84
IEEE Robotics & Automation Magazine - September 2011 - 85
IEEE Robotics & Automation Magazine - September 2011 - 86
IEEE Robotics & Automation Magazine - September 2011 - 87
IEEE Robotics & Automation Magazine - September 2011 - 88
IEEE Robotics & Automation Magazine - September 2011 - 89
IEEE Robotics & Automation Magazine - September 2011 - 90
IEEE Robotics & Automation Magazine - September 2011 - 91
IEEE Robotics & Automation Magazine - September 2011 - 92
IEEE Robotics & Automation Magazine - September 2011 - 93
IEEE Robotics & Automation Magazine - September 2011 - 94
IEEE Robotics & Automation Magazine - September 2011 - 95
IEEE Robotics & Automation Magazine - September 2011 - 96
IEEE Robotics & Automation Magazine - September 2011 - 97
IEEE Robotics & Automation Magazine - September 2011 - 98
IEEE Robotics & Automation Magazine - September 2011 - 99
IEEE Robotics & Automation Magazine - September 2011 - 100
IEEE Robotics & Automation Magazine - September 2011 - 101
IEEE Robotics & Automation Magazine - September 2011 - 102
IEEE Robotics & Automation Magazine - September 2011 - 103
IEEE Robotics & Automation Magazine - September 2011 - 104
IEEE Robotics & Automation Magazine - September 2011 - 105
IEEE Robotics & Automation Magazine - September 2011 - 106
IEEE Robotics & Automation Magazine - September 2011 - 107
IEEE Robotics & Automation Magazine - September 2011 - 108
IEEE Robotics & Automation Magazine - September 2011 - 109
IEEE Robotics & Automation Magazine - September 2011 - 110
IEEE Robotics & Automation Magazine - September 2011 - 111
IEEE Robotics & Automation Magazine - September 2011 - 112
IEEE Robotics & Automation Magazine - September 2011 - 113
IEEE Robotics & Automation Magazine - September 2011 - 114
IEEE Robotics & Automation Magazine - September 2011 - 115
IEEE Robotics & Automation Magazine - September 2011 - 116
IEEE Robotics & Automation Magazine - September 2011 - 117
IEEE Robotics & Automation Magazine - September 2011 - 118
IEEE Robotics & Automation Magazine - September 2011 - 119
IEEE Robotics & Automation Magazine - September 2011 - 120
IEEE Robotics & Automation Magazine - September 2011 - 121
IEEE Robotics & Automation Magazine - September 2011 - 122
IEEE Robotics & Automation Magazine - September 2011 - 123
IEEE Robotics & Automation Magazine - September 2011 - 124
IEEE Robotics & Automation Magazine - September 2011 - 125
IEEE Robotics & Automation Magazine - September 2011 - 126
IEEE Robotics & Automation Magazine - September 2011 - 127
IEEE Robotics & Automation Magazine - September 2011 - 128
IEEE Robotics & Automation Magazine - September 2011 - 129
IEEE Robotics & Automation Magazine - September 2011 - 130
IEEE Robotics & Automation Magazine - September 2011 - 131
IEEE Robotics & Automation Magazine - September 2011 - 132
IEEE Robotics & Automation Magazine - September 2011 - 133
IEEE Robotics & Automation Magazine - September 2011 - 134
IEEE Robotics & Automation Magazine - September 2011 - 135
IEEE Robotics & Automation Magazine - September 2011 - 136
IEEE Robotics & Automation Magazine - September 2011 - Cover3
IEEE Robotics & Automation Magazine - September 2011 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com