IEEE Robotics & Automation Magazine - September 2013 - 45
The temperature measurement of each glider at a given location (x i, y i, z i) is assumed to result from the true value of the
temperature field at this location, T (x i, y i, z i) plus an independent Gaussian noise with standard deviation
v (x i, y i, z i) . Measurements are assumed synoptic, and thus
no time dependence is considered in the analysis. The representation error associated with the gliders and Scanfish measurements and accounting for the potential departure from
synopticity is assumed to be 0.1 °C, as previously estimated
in [16] for the same region, time period, and depth range.
Under these assumptions, the probability to get the set of
measurements " d (x i, y i, z i) ,i = 1fN for a given realization of
the field T (x, y, z) is provided by the likelihood density [17]:
p ^d T (x, y, z)h \ e - i /= 1
N
(Ti - d i) 2
2v i2
(1)
,
where Ti refers to the value of the field at the ith sampling
location, Ti = T ^x i, y i, z ih . According to Bayes' rule, the posterior probability to have the field T (x, y, z) given the set of
observations " d (x i, y i, z i) ,i = 1 " N is
P ^T (x, y, z) d h =
p (d T (x, y, z)) p (T (x, y, z))
,
p (d)
(2)
where p (d) is the probability density of the observations,
a
P ^T (x, y, z)h \ e - 2 F (T) is the a priori probability of the temperature field, and a is a smoothing parameter determined
from the data. Only the thin-plate model, F (T) =
###V d 2 T (x, y, z) dxdydz,is considered in this work, as it
provides significantly better performance than membrane
models defined by F (T) = ### dT (x, y, z) 2 dxdydz [12].
V
Under this consideration, the posterior probability is
P ^T (x, y, z) d h \ e - i /= 1
N
(Ti - d i) 2 a
- F (T)
2
2v 2i
,
(3)
and the maximum a posterior (MAP) estimate is defined by
the field T MAP (x, y, z) that satisfies:
N
T MAP (x, y, z) = arg min e /
T
i=1
(Ti - d i) 2 a
+ F (T)o . (4)
2
2v 2i
MAP
Thus T (x, y, z) is the most probable field compatible
with our level of knowledge described by the smoothness
constraint and the data collected by the fleet of gliders. The
field T MAP (x, y, z) can be calculated using a variational
approach, where satellite data constrain the boundary values
T (x, y, 0) . This procedure optimizes the exploitation of
information available from remote sensors and gliders.
Equation (4) is solved using a 3-D finite element approach.
The total ocean volume under consideration V is discretized
as an unstructured mesh constituted by prismatic elements
defined by 15 nodes [18]. In the present case, a 3-D grid of
1,319 nodes and 387 prismatic elements was generated from
0- to 85-m depth in the region of interest (Figure 5). This grid
corresponds to a segmentation of the volume with ten layers
of prismatic elements of 8.5-m depth and triangular faces
with approximating 12-km edges. This guarantees a minimum vertical and horizontal resolution of 4 m and 6 km,
respectively. At this resolution, the Rossby radius of deformation (representing a fundamental horizontal scale of mesoscale eddies and of the order of 12 km in this region [19]) is
resolved. Thus, the present discretization is appropriate to
estimate the main spatial variability in the region with a limited computational demand.
Following the standard finite element methodology, the
value of the temperature field T (x, y, z) inside an eth prismatic unit of this grid is encoded by the value of the field at
each node and a set of interpolation functions:
T (x, y, z) =
15
/ N k (r, s, t) Tk,
k=1
where Tk is the temperature at the kth node of the eth prismatic element and N k (r, s, t) are the interpolation functions
expressed in a local coordinate system {r, s, t} [13]. Notice
that the local coordinates in the interpolation functions are
functions of the global coordinate system (x, y, z). Confining
(4) to the eth prismatic element and substituting (5) into (4)
results in [20], [21]
Depth
^K eij + A eij h W j = g ie,
0
-10
-20
-30
-40
-50
-60
-70
-80
8.8
9
9.2 9.4
9.6
Longitude
9.8
44.2
44
43.8
43.6
43.4
Latitude
Figure 5. The prismatic elements used to discretize the volume
of the restricted area (only the first layer is fully displayed). The
coastline is represented by the black line in the upper right corner.
(5)
(6)
with matrices given by
p 2
t
2
2
2
q 2 Ni 2 N j + 2 Ni 2 N j u
q 2x 2 2x 2
2y 2 2y 2 u
q
u
2
q 22 Ni 2 N j
2
N
e
i 2N j u
+2
dxdydz
K ij = a ### q+
2x 2y u
2z 2 2z 2
Ve q
u
q
2N i 2N j
2N i 2N j u
q+ 2 2x 2z + 2 2y 2z u
v
Ne
N r(x k) d (x k)
g ei = / i
2
vk
k=1
Ne
N i (x k) d (x k)
e
gi = /
,
(7)
v 2k
k=1
september 2013
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
45
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - September 2013
IEEE Robotics & Automation Magazine - September 2013 - Cover1
IEEE Robotics & Automation Magazine - September 2013 - Cover2
IEEE Robotics & Automation Magazine - September 2013 - 1
IEEE Robotics & Automation Magazine - September 2013 - 2
IEEE Robotics & Automation Magazine - September 2013 - 3
IEEE Robotics & Automation Magazine - September 2013 - 4
IEEE Robotics & Automation Magazine - September 2013 - 5
IEEE Robotics & Automation Magazine - September 2013 - 6
IEEE Robotics & Automation Magazine - September 2013 - 7
IEEE Robotics & Automation Magazine - September 2013 - 8
IEEE Robotics & Automation Magazine - September 2013 - 9
IEEE Robotics & Automation Magazine - September 2013 - 10
IEEE Robotics & Automation Magazine - September 2013 - 11
IEEE Robotics & Automation Magazine - September 2013 - 12
IEEE Robotics & Automation Magazine - September 2013 - 13
IEEE Robotics & Automation Magazine - September 2013 - 14
IEEE Robotics & Automation Magazine - September 2013 - 15
IEEE Robotics & Automation Magazine - September 2013 - 16
IEEE Robotics & Automation Magazine - September 2013 - 17
IEEE Robotics & Automation Magazine - September 2013 - 18
IEEE Robotics & Automation Magazine - September 2013 - 19
IEEE Robotics & Automation Magazine - September 2013 - 20
IEEE Robotics & Automation Magazine - September 2013 - 21
IEEE Robotics & Automation Magazine - September 2013 - 22
IEEE Robotics & Automation Magazine - September 2013 - 23
IEEE Robotics & Automation Magazine - September 2013 - 24
IEEE Robotics & Automation Magazine - September 2013 - 25
IEEE Robotics & Automation Magazine - September 2013 - 26
IEEE Robotics & Automation Magazine - September 2013 - 27
IEEE Robotics & Automation Magazine - September 2013 - 28
IEEE Robotics & Automation Magazine - September 2013 - 29
IEEE Robotics & Automation Magazine - September 2013 - 30
IEEE Robotics & Automation Magazine - September 2013 - 31
IEEE Robotics & Automation Magazine - September 2013 - 32
IEEE Robotics & Automation Magazine - September 2013 - 33
IEEE Robotics & Automation Magazine - September 2013 - 34
IEEE Robotics & Automation Magazine - September 2013 - 35
IEEE Robotics & Automation Magazine - September 2013 - 36
IEEE Robotics & Automation Magazine - September 2013 - 37
IEEE Robotics & Automation Magazine - September 2013 - 38
IEEE Robotics & Automation Magazine - September 2013 - 39
IEEE Robotics & Automation Magazine - September 2013 - 40
IEEE Robotics & Automation Magazine - September 2013 - 41
IEEE Robotics & Automation Magazine - September 2013 - 42
IEEE Robotics & Automation Magazine - September 2013 - 43
IEEE Robotics & Automation Magazine - September 2013 - 44
IEEE Robotics & Automation Magazine - September 2013 - 45
IEEE Robotics & Automation Magazine - September 2013 - 46
IEEE Robotics & Automation Magazine - September 2013 - 47
IEEE Robotics & Automation Magazine - September 2013 - 48
IEEE Robotics & Automation Magazine - September 2013 - 49
IEEE Robotics & Automation Magazine - September 2013 - 50
IEEE Robotics & Automation Magazine - September 2013 - 51
IEEE Robotics & Automation Magazine - September 2013 - 52
IEEE Robotics & Automation Magazine - September 2013 - 53
IEEE Robotics & Automation Magazine - September 2013 - 54
IEEE Robotics & Automation Magazine - September 2013 - 55
IEEE Robotics & Automation Magazine - September 2013 - 56
IEEE Robotics & Automation Magazine - September 2013 - 57
IEEE Robotics & Automation Magazine - September 2013 - 58
IEEE Robotics & Automation Magazine - September 2013 - 59
IEEE Robotics & Automation Magazine - September 2013 - 60
IEEE Robotics & Automation Magazine - September 2013 - 61
IEEE Robotics & Automation Magazine - September 2013 - 62
IEEE Robotics & Automation Magazine - September 2013 - 63
IEEE Robotics & Automation Magazine - September 2013 - 64
IEEE Robotics & Automation Magazine - September 2013 - 65
IEEE Robotics & Automation Magazine - September 2013 - 66
IEEE Robotics & Automation Magazine - September 2013 - 67
IEEE Robotics & Automation Magazine - September 2013 - 68
IEEE Robotics & Automation Magazine - September 2013 - 69
IEEE Robotics & Automation Magazine - September 2013 - 70
IEEE Robotics & Automation Magazine - September 2013 - 71
IEEE Robotics & Automation Magazine - September 2013 - 72
IEEE Robotics & Automation Magazine - September 2013 - 73
IEEE Robotics & Automation Magazine - September 2013 - 74
IEEE Robotics & Automation Magazine - September 2013 - 75
IEEE Robotics & Automation Magazine - September 2013 - 76
IEEE Robotics & Automation Magazine - September 2013 - 77
IEEE Robotics & Automation Magazine - September 2013 - 78
IEEE Robotics & Automation Magazine - September 2013 - 79
IEEE Robotics & Automation Magazine - September 2013 - 80
IEEE Robotics & Automation Magazine - September 2013 - 81
IEEE Robotics & Automation Magazine - September 2013 - 82
IEEE Robotics & Automation Magazine - September 2013 - 83
IEEE Robotics & Automation Magazine - September 2013 - 84
IEEE Robotics & Automation Magazine - September 2013 - 85
IEEE Robotics & Automation Magazine - September 2013 - 86
IEEE Robotics & Automation Magazine - September 2013 - 87
IEEE Robotics & Automation Magazine - September 2013 - 88
IEEE Robotics & Automation Magazine - September 2013 - 89
IEEE Robotics & Automation Magazine - September 2013 - 90
IEEE Robotics & Automation Magazine - September 2013 - 91
IEEE Robotics & Automation Magazine - September 2013 - 92
IEEE Robotics & Automation Magazine - September 2013 - 93
IEEE Robotics & Automation Magazine - September 2013 - 94
IEEE Robotics & Automation Magazine - September 2013 - 95
IEEE Robotics & Automation Magazine - September 2013 - 96
IEEE Robotics & Automation Magazine - September 2013 - 97
IEEE Robotics & Automation Magazine - September 2013 - 98
IEEE Robotics & Automation Magazine - September 2013 - 99
IEEE Robotics & Automation Magazine - September 2013 - 100
IEEE Robotics & Automation Magazine - September 2013 - 101
IEEE Robotics & Automation Magazine - September 2013 - 102
IEEE Robotics & Automation Magazine - September 2013 - 103
IEEE Robotics & Automation Magazine - September 2013 - 104
IEEE Robotics & Automation Magazine - September 2013 - Cover3
IEEE Robotics & Automation Magazine - September 2013 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com