IEEE Robotics & Automation Magazine - September 2014 - 148
the environments studied. Nevertheless, at this stage, the instructors noted that the architects were fully engaged and the
engineers were perceiving the available architectural palette.
The next step was to challenge both disciplines simultaneously to create a fully synergistic system, a truly architectural
robotics product. In contrast to Projects 1 and 2, Project 3 incorporated constraints, with feasibility as a consideration but
not a necessity. More specifically, the projects
(shown in Figures 7-10)
The field of architectural
were to be designed at the
scale of a room or an
robotics promises to
apartment. This was an
essential requirement as
support and enhance
the theme of the project
was "Aging-in-Place" [17].
human needs and desires.
The project was intended
to generate ideas to ease a
person's transition into aged care [18] to try to tackle a big
global social problem.
This project was allotted the maximum amount of time
(five weeks, as opposed to the two weeks given for Project 1
and four weeks for Project 2) to allow the groups to create
complex environments, refine the mechanisms, and truly integrate their systems. It also resulted in the closest collaborations in the class, as noted by the students. The engineers
freely suggested architectural innovations, while the architects
were comfortable and confident in recommending sensing
and actuation mechanisms, as evidenced by the students' oral
conceptual presentations. Simultaneously, the students and
instructors noted less time being taken for analyses as the semester progressed, with insightful comments from both sides
on other students' subject matter.
The instructors found that, at a high level, the line between the two individual disciplines became increasingly
blurred and the students ceased to be engineers or architects
and simply became members of the group. The architects
gained insight into robot modeling-kinematics and dynamics, sensor fusion, and algorithmic considerations-while the
engineers developed a greater appreciation for the incorporation of aesthetics and form into a system along with the composition of space.
All Project 3 designs, in one way or another, were about
changing the shape of the human environment. These projects either involved applications/adaptations of robotics manipulator concepts or the mobile robot paradigm. Every
project required user sensing and localization within the
home setting. While the robotic technologies were not
groundbreaking in and of themselves, it could be argued that
the applications certainly were and that they could just as
easily be applied to more conventional home or work settings. It is important to note that these environments were
created from the ground up, with the robotic components already embedded in them (Figures 7, 8, and 10) as opposed
being added to an existing architectural structure like in
Projects 1 and 2 (providing ideas for 2) in Remark 1).
The outcomes of the collaborative process produced concepts of high potential. This is noteworthy due to the openended nature of these research problems, hinting that
although high-tech devices and computers are now ubiquitous, robotics technology has not yet realized its potential in
the home environment as it has in almost every other aspect
of our lives [19].
Assessment and Evaluation
The evaluation of the success and impact of the class was
made at several levels, most of which were qualitative or oral.
From the instructors' perspectives, the class (and its successors) surpassed expectations in its primary goal of producing
a group of graduate students who were well qualified to conduct research in architectural robotics. Of the eight students
in this first class, four have completed Ph.D. theses in the
area (three architects and one engineer) and one student is
working on a technology closely associated with the architectural robotics paradigm. A similar ratio of students in subsequent classes has followed into research in architectural
robotics, as highlighted in Table 1. In the fall 2010 and 2011
offerings of the class, the issue of having fewer nonengineers
than engineers was mitigated by the presence of architecture
students who had previously taken the class. These students
served as teaching assistants, stepping in to work actively on
some projects while simultaneously consulting on others.
This interest and expertise has seeded and catalyzed the
highly successful research program of the two class instructors over the past several years, including a multiyear grant
awarded by the U.S. National Science Foundation to conduct
fundamental research into robot environments for aging in
place; the initial foundational ideas, research, and student involvement for this were laid during the initial class offering.
Throughout the course, some key fundamental research
insights emerged. For example, in the third group of projects, the innovations in the robot mechanisms proposed
were minor. However, the way the projects
were deployed in the environment was novel,
Table 1. Students in architectural robotics offerings.
especially the interaction and communication with the people in it. The nontraditional
Class Offerings Engineers Architects Other Disciplines Theses
use of lighting was particularly noted. This
Spring 2009
4
4
-
5
highlighted the point that architectural roFall 2009
3
2
1
2
botics is fundamentally about people.
Fall 2010
5
3
-
1
Often, traditional architecture designs are
Fall 2011
6
1
1
2
beautiful yet sterile envelopes and the archiFall 2012
3
5
-
N/A
tect exits the process before or when people
148
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
september 2014
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - September 2014
IEEE Robotics & Automation Magazine - September 2014 - Cover1
IEEE Robotics & Automation Magazine - September 2014 - Cover2
IEEE Robotics & Automation Magazine - September 2014 - 1
IEEE Robotics & Automation Magazine - September 2014 - 2
IEEE Robotics & Automation Magazine - September 2014 - 3
IEEE Robotics & Automation Magazine - September 2014 - 4
IEEE Robotics & Automation Magazine - September 2014 - 5
IEEE Robotics & Automation Magazine - September 2014 - 6
IEEE Robotics & Automation Magazine - September 2014 - 7
IEEE Robotics & Automation Magazine - September 2014 - 8
IEEE Robotics & Automation Magazine - September 2014 - 9
IEEE Robotics & Automation Magazine - September 2014 - 10
IEEE Robotics & Automation Magazine - September 2014 - 11
IEEE Robotics & Automation Magazine - September 2014 - 12
IEEE Robotics & Automation Magazine - September 2014 - 13
IEEE Robotics & Automation Magazine - September 2014 - 14
IEEE Robotics & Automation Magazine - September 2014 - 15
IEEE Robotics & Automation Magazine - September 2014 - 16
IEEE Robotics & Automation Magazine - September 2014 - 17
IEEE Robotics & Automation Magazine - September 2014 - 18
IEEE Robotics & Automation Magazine - September 2014 - 19
IEEE Robotics & Automation Magazine - September 2014 - 20
IEEE Robotics & Automation Magazine - September 2014 - 21
IEEE Robotics & Automation Magazine - September 2014 - 22
IEEE Robotics & Automation Magazine - September 2014 - 23
IEEE Robotics & Automation Magazine - September 2014 - 24
IEEE Robotics & Automation Magazine - September 2014 - 25
IEEE Robotics & Automation Magazine - September 2014 - 26
IEEE Robotics & Automation Magazine - September 2014 - 27
IEEE Robotics & Automation Magazine - September 2014 - 28
IEEE Robotics & Automation Magazine - September 2014 - 29
IEEE Robotics & Automation Magazine - September 2014 - 30
IEEE Robotics & Automation Magazine - September 2014 - 31
IEEE Robotics & Automation Magazine - September 2014 - 32
IEEE Robotics & Automation Magazine - September 2014 - 33
IEEE Robotics & Automation Magazine - September 2014 - 34
IEEE Robotics & Automation Magazine - September 2014 - 35
IEEE Robotics & Automation Magazine - September 2014 - 36
IEEE Robotics & Automation Magazine - September 2014 - 37
IEEE Robotics & Automation Magazine - September 2014 - 38
IEEE Robotics & Automation Magazine - September 2014 - 39
IEEE Robotics & Automation Magazine - September 2014 - 40
IEEE Robotics & Automation Magazine - September 2014 - 41
IEEE Robotics & Automation Magazine - September 2014 - 42
IEEE Robotics & Automation Magazine - September 2014 - 43
IEEE Robotics & Automation Magazine - September 2014 - 44
IEEE Robotics & Automation Magazine - September 2014 - 45
IEEE Robotics & Automation Magazine - September 2014 - 46
IEEE Robotics & Automation Magazine - September 2014 - 47
IEEE Robotics & Automation Magazine - September 2014 - 48
IEEE Robotics & Automation Magazine - September 2014 - 49
IEEE Robotics & Automation Magazine - September 2014 - 50
IEEE Robotics & Automation Magazine - September 2014 - 51
IEEE Robotics & Automation Magazine - September 2014 - 52
IEEE Robotics & Automation Magazine - September 2014 - 53
IEEE Robotics & Automation Magazine - September 2014 - 54
IEEE Robotics & Automation Magazine - September 2014 - 55
IEEE Robotics & Automation Magazine - September 2014 - 56
IEEE Robotics & Automation Magazine - September 2014 - 57
IEEE Robotics & Automation Magazine - September 2014 - 58
IEEE Robotics & Automation Magazine - September 2014 - 59
IEEE Robotics & Automation Magazine - September 2014 - 60
IEEE Robotics & Automation Magazine - September 2014 - 61
IEEE Robotics & Automation Magazine - September 2014 - 62
IEEE Robotics & Automation Magazine - September 2014 - 63
IEEE Robotics & Automation Magazine - September 2014 - 64
IEEE Robotics & Automation Magazine - September 2014 - 65
IEEE Robotics & Automation Magazine - September 2014 - 66
IEEE Robotics & Automation Magazine - September 2014 - 67
IEEE Robotics & Automation Magazine - September 2014 - 68
IEEE Robotics & Automation Magazine - September 2014 - 69
IEEE Robotics & Automation Magazine - September 2014 - 70
IEEE Robotics & Automation Magazine - September 2014 - 71
IEEE Robotics & Automation Magazine - September 2014 - 72
IEEE Robotics & Automation Magazine - September 2014 - 73
IEEE Robotics & Automation Magazine - September 2014 - 74
IEEE Robotics & Automation Magazine - September 2014 - 75
IEEE Robotics & Automation Magazine - September 2014 - 76
IEEE Robotics & Automation Magazine - September 2014 - 77
IEEE Robotics & Automation Magazine - September 2014 - 78
IEEE Robotics & Automation Magazine - September 2014 - 79
IEEE Robotics & Automation Magazine - September 2014 - 80
IEEE Robotics & Automation Magazine - September 2014 - 81
IEEE Robotics & Automation Magazine - September 2014 - 82
IEEE Robotics & Automation Magazine - September 2014 - 83
IEEE Robotics & Automation Magazine - September 2014 - 84
IEEE Robotics & Automation Magazine - September 2014 - 85
IEEE Robotics & Automation Magazine - September 2014 - 86
IEEE Robotics & Automation Magazine - September 2014 - 87
IEEE Robotics & Automation Magazine - September 2014 - 88
IEEE Robotics & Automation Magazine - September 2014 - 89
IEEE Robotics & Automation Magazine - September 2014 - 90
IEEE Robotics & Automation Magazine - September 2014 - 91
IEEE Robotics & Automation Magazine - September 2014 - 92
IEEE Robotics & Automation Magazine - September 2014 - 93
IEEE Robotics & Automation Magazine - September 2014 - 94
IEEE Robotics & Automation Magazine - September 2014 - 95
IEEE Robotics & Automation Magazine - September 2014 - 96
IEEE Robotics & Automation Magazine - September 2014 - 97
IEEE Robotics & Automation Magazine - September 2014 - 98
IEEE Robotics & Automation Magazine - September 2014 - 99
IEEE Robotics & Automation Magazine - September 2014 - 100
IEEE Robotics & Automation Magazine - September 2014 - 101
IEEE Robotics & Automation Magazine - September 2014 - 102
IEEE Robotics & Automation Magazine - September 2014 - 103
IEEE Robotics & Automation Magazine - September 2014 - 104
IEEE Robotics & Automation Magazine - September 2014 - 105
IEEE Robotics & Automation Magazine - September 2014 - 106
IEEE Robotics & Automation Magazine - September 2014 - 107
IEEE Robotics & Automation Magazine - September 2014 - 108
IEEE Robotics & Automation Magazine - September 2014 - 109
IEEE Robotics & Automation Magazine - September 2014 - 110
IEEE Robotics & Automation Magazine - September 2014 - 111
IEEE Robotics & Automation Magazine - September 2014 - 112
IEEE Robotics & Automation Magazine - September 2014 - 113
IEEE Robotics & Automation Magazine - September 2014 - 114
IEEE Robotics & Automation Magazine - September 2014 - 115
IEEE Robotics & Automation Magazine - September 2014 - 116
IEEE Robotics & Automation Magazine - September 2014 - 117
IEEE Robotics & Automation Magazine - September 2014 - 118
IEEE Robotics & Automation Magazine - September 2014 - 119
IEEE Robotics & Automation Magazine - September 2014 - 120
IEEE Robotics & Automation Magazine - September 2014 - 121
IEEE Robotics & Automation Magazine - September 2014 - 122
IEEE Robotics & Automation Magazine - September 2014 - 123
IEEE Robotics & Automation Magazine - September 2014 - 124
IEEE Robotics & Automation Magazine - September 2014 - 125
IEEE Robotics & Automation Magazine - September 2014 - 126
IEEE Robotics & Automation Magazine - September 2014 - 127
IEEE Robotics & Automation Magazine - September 2014 - 128
IEEE Robotics & Automation Magazine - September 2014 - 129
IEEE Robotics & Automation Magazine - September 2014 - 130
IEEE Robotics & Automation Magazine - September 2014 - 131
IEEE Robotics & Automation Magazine - September 2014 - 132
IEEE Robotics & Automation Magazine - September 2014 - 133
IEEE Robotics & Automation Magazine - September 2014 - 134
IEEE Robotics & Automation Magazine - September 2014 - 135
IEEE Robotics & Automation Magazine - September 2014 - 136
IEEE Robotics & Automation Magazine - September 2014 - 137
IEEE Robotics & Automation Magazine - September 2014 - 138
IEEE Robotics & Automation Magazine - September 2014 - 139
IEEE Robotics & Automation Magazine - September 2014 - 140
IEEE Robotics & Automation Magazine - September 2014 - 141
IEEE Robotics & Automation Magazine - September 2014 - 142
IEEE Robotics & Automation Magazine - September 2014 - 143
IEEE Robotics & Automation Magazine - September 2014 - 144
IEEE Robotics & Automation Magazine - September 2014 - 145
IEEE Robotics & Automation Magazine - September 2014 - 146
IEEE Robotics & Automation Magazine - September 2014 - 147
IEEE Robotics & Automation Magazine - September 2014 - 148
IEEE Robotics & Automation Magazine - September 2014 - 149
IEEE Robotics & Automation Magazine - September 2014 - 150
IEEE Robotics & Automation Magazine - September 2014 - 151
IEEE Robotics & Automation Magazine - September 2014 - 152
IEEE Robotics & Automation Magazine - September 2014 - 153
IEEE Robotics & Automation Magazine - September 2014 - 154
IEEE Robotics & Automation Magazine - September 2014 - 155
IEEE Robotics & Automation Magazine - September 2014 - 156
IEEE Robotics & Automation Magazine - September 2014 - 157
IEEE Robotics & Automation Magazine - September 2014 - 158
IEEE Robotics & Automation Magazine - September 2014 - 159
IEEE Robotics & Automation Magazine - September 2014 - 160
IEEE Robotics & Automation Magazine - September 2014 - 161
IEEE Robotics & Automation Magazine - September 2014 - 162
IEEE Robotics & Automation Magazine - September 2014 - 163
IEEE Robotics & Automation Magazine - September 2014 - 164
IEEE Robotics & Automation Magazine - September 2014 - 165
IEEE Robotics & Automation Magazine - September 2014 - 166
IEEE Robotics & Automation Magazine - September 2014 - 167
IEEE Robotics & Automation Magazine - September 2014 - 168
IEEE Robotics & Automation Magazine - September 2014 - Cover3
IEEE Robotics & Automation Magazine - September 2014 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com