IEEE Robotics & Automation Magazine - September 2016 - 112
design model perfectly equivalent to the octopus sucker in
size and anatomical proportion. The 3-D information was
used to develop the first passive prototypes of the artificial
suction cups made of silicone [29] that are able to achieve
adhesion in wet conditions. These capabilities demonstrate
the importance of the role of morphology, material compliance, and interaction with the environment.
From a technological perspective, an effort has also been
made to develop the first soft actuation unit integrated into
the artificial suction cup based on dielectric elastomer actuators (DEAs). The actuation unit imitates the role of the acetabular radial muscles in creating suction and moving water
from the infundibulum-substrate interface toward the acetabulum, enhancing attachment. The device works in a wet
environment and is able to produce up to 6 kPa of pressure,
reaching a maximum pressure in less than 300 ms [30].
Figure 3 shows the approach used in designing the artificial
sucker. The two axes represent the level of abstraction of the
solution found, with bioinspiration and functionality increasing in the direction of the arrows.
How Plants and Plant-Inspired Robots Exploit
Morphological Computation
Different from animals, which are determinate in growth and
reach a final size before they are mature, plants exhibit indeterminate growth and continue to add new organs and tissues
Figure 4. A prototype of the PLANTOID robot. The figure shows
two functional roots, a trunk containing a microcontroller main
board and a spool of the material used to grow the robotic root
in polypropylene (nominal diameter d = 2.5 mm), and an aerial
portion with branches that include polymeric artificial leaves
(based on controllable hygromorphic plant-inspired material
moving in response to humidity, see [39]).
112
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
September 2016
for their entire life span. This also implies that they continuously adapt their morphology and physiology in response to
variability within their environment, showing considerable
plasticity, particularly in foraging for resources [8], [31].
These properties are particularly evident in the plant root system, which is able to explore the soil and penetrate the environment with a number of sensorized apexes, resulting in
capillary searching of the entire volume of the medium. This
exploratory ability of plant roots emerges from the complex
and dynamic interaction between their morphology, sensorymotor control, and environment, which represents the basic
principle of morphological computation. The motion of plant
roots is coordinated and efficiently shaped to exploit soil
resources and avoid hazards. In the soil, the roots are exposed
to multiple stimuli, many of which can potentially elicit such
movements. The overall apex bending movement is a combination of both active bending and passive deflection. The
elongation rate of the root apex is determined by both the
root apex growth pressure and by the reaction force of the soil
to its deformation [32], [33]. For example, the mechanical
strength of soil may increase with drying and thereby restrict
root elongation [34]. The mechanical properties of the plant
roots and the morphology of their structure have been considered in developing the first level of control embedded in
the mechanical structure of the first robot inspired by plant
roots, which is named PLANTOID [35], [36] (Figure 4).
An extreme representation of morphological computation
in plants generated by the interaction of the body, materials,
and environment is given by their passive movements. As
stated by Zahedi and Ay [37], "the consensus is that morphological computation is the contribution of the morphology
and the environment to the behavior that cannot be assigned
to a nervous system or a controller." Plant materials are optimized to reduce energy consumption during motion because
of the sedentary nature of plants that obliges them to make
the most of resources available in the environment. Different
from animals, plants cannot move when resources fundamental to survival are not more available. To address these
limitations, they have developed energetically efficient solutions to exploit the interaction with changing environmental
conditions, especially humidity and temperature variations.
Examples of these movements are found in pinecones, which
release their ripe seeds by opening their scales in drying
ambient air conditions and closing their scales in a wet environment [38]. This is possible due to the organization of plant
cell walls, which are composed of a soft matrix (consisting of
hemicelluloses, pectin, structural proteins, and/or lignin,
which are able to swell and desorb humidity) and stiff cellulose fibrils embedded in this pliant medium, which drive the
movement of the plant organ. This actuation principle is
implemented by a wide variety of species in their seed dispersal units so that seeds are able to fly, drill, or bend.
These systems do not require additional control or energy, and this makes them an interesting source of inspiration
in robotics and in actuation technologies that are not necessarily muscle-like. Following this principle, a soft actuator
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - September 2016
IEEE Robotics & Automation Magazine - September 2016 - Cover1
IEEE Robotics & Automation Magazine - September 2016 - Cover2
IEEE Robotics & Automation Magazine - September 2016 - 1
IEEE Robotics & Automation Magazine - September 2016 - 2
IEEE Robotics & Automation Magazine - September 2016 - 3
IEEE Robotics & Automation Magazine - September 2016 - 4
IEEE Robotics & Automation Magazine - September 2016 - 5
IEEE Robotics & Automation Magazine - September 2016 - 6
IEEE Robotics & Automation Magazine - September 2016 - 7
IEEE Robotics & Automation Magazine - September 2016 - 8
IEEE Robotics & Automation Magazine - September 2016 - 9
IEEE Robotics & Automation Magazine - September 2016 - 10
IEEE Robotics & Automation Magazine - September 2016 - 11
IEEE Robotics & Automation Magazine - September 2016 - 12
IEEE Robotics & Automation Magazine - September 2016 - 13
IEEE Robotics & Automation Magazine - September 2016 - 14
IEEE Robotics & Automation Magazine - September 2016 - 15
IEEE Robotics & Automation Magazine - September 2016 - 16
IEEE Robotics & Automation Magazine - September 2016 - 17
IEEE Robotics & Automation Magazine - September 2016 - 18
IEEE Robotics & Automation Magazine - September 2016 - 19
IEEE Robotics & Automation Magazine - September 2016 - 20
IEEE Robotics & Automation Magazine - September 2016 - 21
IEEE Robotics & Automation Magazine - September 2016 - 22
IEEE Robotics & Automation Magazine - September 2016 - 23
IEEE Robotics & Automation Magazine - September 2016 - 24
IEEE Robotics & Automation Magazine - September 2016 - 25
IEEE Robotics & Automation Magazine - September 2016 - 26
IEEE Robotics & Automation Magazine - September 2016 - 27
IEEE Robotics & Automation Magazine - September 2016 - 28
IEEE Robotics & Automation Magazine - September 2016 - 29
IEEE Robotics & Automation Magazine - September 2016 - 30
IEEE Robotics & Automation Magazine - September 2016 - 31
IEEE Robotics & Automation Magazine - September 2016 - 32
IEEE Robotics & Automation Magazine - September 2016 - 33
IEEE Robotics & Automation Magazine - September 2016 - 34
IEEE Robotics & Automation Magazine - September 2016 - 35
IEEE Robotics & Automation Magazine - September 2016 - 36
IEEE Robotics & Automation Magazine - September 2016 - 37
IEEE Robotics & Automation Magazine - September 2016 - 38
IEEE Robotics & Automation Magazine - September 2016 - 39
IEEE Robotics & Automation Magazine - September 2016 - 40
IEEE Robotics & Automation Magazine - September 2016 - 41
IEEE Robotics & Automation Magazine - September 2016 - 42
IEEE Robotics & Automation Magazine - September 2016 - 43
IEEE Robotics & Automation Magazine - September 2016 - 44
IEEE Robotics & Automation Magazine - September 2016 - 45
IEEE Robotics & Automation Magazine - September 2016 - 46
IEEE Robotics & Automation Magazine - September 2016 - 47
IEEE Robotics & Automation Magazine - September 2016 - 48
IEEE Robotics & Automation Magazine - September 2016 - 49
IEEE Robotics & Automation Magazine - September 2016 - 50
IEEE Robotics & Automation Magazine - September 2016 - 51
IEEE Robotics & Automation Magazine - September 2016 - 52
IEEE Robotics & Automation Magazine - September 2016 - 53
IEEE Robotics & Automation Magazine - September 2016 - 54
IEEE Robotics & Automation Magazine - September 2016 - 55
IEEE Robotics & Automation Magazine - September 2016 - 56
IEEE Robotics & Automation Magazine - September 2016 - 57
IEEE Robotics & Automation Magazine - September 2016 - 58
IEEE Robotics & Automation Magazine - September 2016 - 59
IEEE Robotics & Automation Magazine - September 2016 - 60
IEEE Robotics & Automation Magazine - September 2016 - 61
IEEE Robotics & Automation Magazine - September 2016 - 62
IEEE Robotics & Automation Magazine - September 2016 - 63
IEEE Robotics & Automation Magazine - September 2016 - 64
IEEE Robotics & Automation Magazine - September 2016 - 65
IEEE Robotics & Automation Magazine - September 2016 - 66
IEEE Robotics & Automation Magazine - September 2016 - 67
IEEE Robotics & Automation Magazine - September 2016 - 68
IEEE Robotics & Automation Magazine - September 2016 - 69
IEEE Robotics & Automation Magazine - September 2016 - 70
IEEE Robotics & Automation Magazine - September 2016 - 71
IEEE Robotics & Automation Magazine - September 2016 - 72
IEEE Robotics & Automation Magazine - September 2016 - 73
IEEE Robotics & Automation Magazine - September 2016 - 74
IEEE Robotics & Automation Magazine - September 2016 - 75
IEEE Robotics & Automation Magazine - September 2016 - 76
IEEE Robotics & Automation Magazine - September 2016 - 77
IEEE Robotics & Automation Magazine - September 2016 - 78
IEEE Robotics & Automation Magazine - September 2016 - 79
IEEE Robotics & Automation Magazine - September 2016 - 80
IEEE Robotics & Automation Magazine - September 2016 - 81
IEEE Robotics & Automation Magazine - September 2016 - 82
IEEE Robotics & Automation Magazine - September 2016 - 83
IEEE Robotics & Automation Magazine - September 2016 - 84
IEEE Robotics & Automation Magazine - September 2016 - 85
IEEE Robotics & Automation Magazine - September 2016 - 86
IEEE Robotics & Automation Magazine - September 2016 - 87
IEEE Robotics & Automation Magazine - September 2016 - 88
IEEE Robotics & Automation Magazine - September 2016 - 89
IEEE Robotics & Automation Magazine - September 2016 - 90
IEEE Robotics & Automation Magazine - September 2016 - 91
IEEE Robotics & Automation Magazine - September 2016 - 92
IEEE Robotics & Automation Magazine - September 2016 - 93
IEEE Robotics & Automation Magazine - September 2016 - 94
IEEE Robotics & Automation Magazine - September 2016 - 95
IEEE Robotics & Automation Magazine - September 2016 - 96
IEEE Robotics & Automation Magazine - September 2016 - 97
IEEE Robotics & Automation Magazine - September 2016 - 98
IEEE Robotics & Automation Magazine - September 2016 - 99
IEEE Robotics & Automation Magazine - September 2016 - 100
IEEE Robotics & Automation Magazine - September 2016 - 101
IEEE Robotics & Automation Magazine - September 2016 - 102
IEEE Robotics & Automation Magazine - September 2016 - 103
IEEE Robotics & Automation Magazine - September 2016 - 104
IEEE Robotics & Automation Magazine - September 2016 - 105
IEEE Robotics & Automation Magazine - September 2016 - 106
IEEE Robotics & Automation Magazine - September 2016 - 107
IEEE Robotics & Automation Magazine - September 2016 - 108
IEEE Robotics & Automation Magazine - September 2016 - 109
IEEE Robotics & Automation Magazine - September 2016 - 110
IEEE Robotics & Automation Magazine - September 2016 - 111
IEEE Robotics & Automation Magazine - September 2016 - 112
IEEE Robotics & Automation Magazine - September 2016 - 113
IEEE Robotics & Automation Magazine - September 2016 - 114
IEEE Robotics & Automation Magazine - September 2016 - 115
IEEE Robotics & Automation Magazine - September 2016 - 116
IEEE Robotics & Automation Magazine - September 2016 - 117
IEEE Robotics & Automation Magazine - September 2016 - 118
IEEE Robotics & Automation Magazine - September 2016 - 119
IEEE Robotics & Automation Magazine - September 2016 - 120
IEEE Robotics & Automation Magazine - September 2016 - 121
IEEE Robotics & Automation Magazine - September 2016 - 122
IEEE Robotics & Automation Magazine - September 2016 - 123
IEEE Robotics & Automation Magazine - September 2016 - 124
IEEE Robotics & Automation Magazine - September 2016 - 125
IEEE Robotics & Automation Magazine - September 2016 - 126
IEEE Robotics & Automation Magazine - September 2016 - 127
IEEE Robotics & Automation Magazine - September 2016 - 128
IEEE Robotics & Automation Magazine - September 2016 - 129
IEEE Robotics & Automation Magazine - September 2016 - 130
IEEE Robotics & Automation Magazine - September 2016 - 131
IEEE Robotics & Automation Magazine - September 2016 - 132
IEEE Robotics & Automation Magazine - September 2016 - 133
IEEE Robotics & Automation Magazine - September 2016 - 134
IEEE Robotics & Automation Magazine - September 2016 - 135
IEEE Robotics & Automation Magazine - September 2016 - 136
IEEE Robotics & Automation Magazine - September 2016 - Cover3
IEEE Robotics & Automation Magazine - September 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com