IEEE Robotics & Automation Magazine - September 2018 - 41
(as illustrated and discussed in the section "Application
Potential and Acceptance"), these machines could become
ubiquitous and eventually enrich our lives in manifold ways.
In this regard, robots capable of exhibiting sociability and
achieving widespread societal acceptance are needed more
than ever. Such sociable robots' shape, size, look, behavior,
and intelligence must all be customized and designed taking
into account that they will be working in a human-centered
environment. This was the idea behind the development of
the Pepper robot by SoftBank Robotics (https://www.ald
.softbankrobotics.com/en). Although Pepper was initially
designed for a particular application of business-to-business
(B2B) uses in SoftBank stores, the robot became a platform of
interest all around the world for various other applications,
including in the business-to-consumer (B2C), business-toacademics (B2A), and business-to-developers (B2D) areas
and in a variety of use cases. For example, the Pepper robot is
currently deployed in thousands of homes and schools, and it
has been selected as the robotic platform for the RoboCup@
Home (http://www.robocupathome.org) Social Standard Platform League (SSPL) competitions.
A Global Overview of Pepper
Pepper (Figure 1) is an industrially produced humanoid robot
launched in June 2014 that was first created for B2B needs
and later adapted for B2C purposes. The machine is capable
of exhibiting body language, perceiving and interacting with
its surroundings, and moving around. It can also analyze people's expressions and voice tones, using the latest advances and
proprietary algorithms in voice and emotion recognition to
spark interactions. The robot is equipped with features and
high-level interfaces for multimodal communication with the
humans around it.
Pepper is a 1.2-m-tall wheeled humanoid robot, with 17
joints for graceful and expressive body language, three
omnidirectional wheels to move around smoothly, approximately 12 h of battery life for nonstop activities, and the
ability to return to the recharging station, if required. It is a
carefully shaped robot, without any sharp edges, for a more
appealing and safer presence in the human environment.
Soft parts in some joints (e.g., the elbow, shoulder, and hip)
prevent the risk of pinching. The machine's size and look
aim to make it appropriate and acceptable in daily life for
interacting with human beings. It is designed for a wide
range of multimodal expressive gestures and behaviors and
is equipped with a tablet (which also makes development
and debugging convenient).
The Need and the Design Principles
Before becoming SoftBank Robotics, Aldebaran Robotics
(founded by Bruno Maisonnier) was involved in the Romeo
project-and later in a follow-up project, Romeo2 (http://
projetromeo.com)-with the goal of creating a daily-lifecompanion humanoid robot capable of providing physical and
cognitive assistance to people needing support. Some of the
interesting outcomes of the projects also included data on users'
expectations about the robot's shape, size, and behavior. These
revealed that people expect such robots to be taller than the
58 cm of the NAO robot (https://www.ald.softbankrobotics
.com/en/robots/nao) for some day-to-day interaction contexts
but at the same time not taller than the height of an average
person sitting in a chair. Such studies pointed up the need for
investigating the next generation of personal and humancentered service robots.
At the same time,
under the strong guidance
Pepper was initially
of chief operating officer
Masayoshi Son, SoftBank
designed for B2B but with
(http://www.softbank
.jp/en/) sought to develop
the hope that, at least in
a robot to meet its B2B
needs, help reduce the
Japan, it could intrigue
workload of its store staff,
and attract more customand attract consumers.
ers. In so doing, the company significantly advanced
the vision of achieving a new generation of humanoid robot
and, hence, initiating a new chapter in robotics: the development of the Pepper robot (aptly nicknamed Juliet at the time,
for what was a secret program following the Romeo project).
Pepper was initially designed for B2B but with the hope
that, at least in Japan, it could intrigue and attract consumers.
Therefore, the anticipated need of the Japanese B2C market
in the coming years was also incorporated in the business
plan. At the time, there were various advanced humanoid
robots (some also part of a series)-e.g., Advanced Step in
(a)
(b)
Figure 1. The SoftBank Robotics Pepper robot. (Image courtesy
of SoftBank Robotics.)
september 2018
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
41
https://www.ald.softbankrobotics.com/en/robots/nao
http://ald.softbankrobotics.com/en
http://www.softbank.jp/en/
http://www.robocupathome.org
http://projetromeo.com
IEEE Robotics & Automation Magazine - September 2018
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - September 2018
Contents
IEEE Robotics & Automation Magazine - September 2018 - Cover1
IEEE Robotics & Automation Magazine - September 2018 - Cover2
IEEE Robotics & Automation Magazine - September 2018 - Contents
IEEE Robotics & Automation Magazine - September 2018 - 2
IEEE Robotics & Automation Magazine - September 2018 - 3
IEEE Robotics & Automation Magazine - September 2018 - 4
IEEE Robotics & Automation Magazine - September 2018 - 5
IEEE Robotics & Automation Magazine - September 2018 - 6
IEEE Robotics & Automation Magazine - September 2018 - 7
IEEE Robotics & Automation Magazine - September 2018 - 8
IEEE Robotics & Automation Magazine - September 2018 - 9
IEEE Robotics & Automation Magazine - September 2018 - 10
IEEE Robotics & Automation Magazine - September 2018 - 11
IEEE Robotics & Automation Magazine - September 2018 - 12
IEEE Robotics & Automation Magazine - September 2018 - 13
IEEE Robotics & Automation Magazine - September 2018 - 14
IEEE Robotics & Automation Magazine - September 2018 - 15
IEEE Robotics & Automation Magazine - September 2018 - 16
IEEE Robotics & Automation Magazine - September 2018 - 17
IEEE Robotics & Automation Magazine - September 2018 - 18
IEEE Robotics & Automation Magazine - September 2018 - 19
IEEE Robotics & Automation Magazine - September 2018 - 20
IEEE Robotics & Automation Magazine - September 2018 - 21
IEEE Robotics & Automation Magazine - September 2018 - 22
IEEE Robotics & Automation Magazine - September 2018 - 23
IEEE Robotics & Automation Magazine - September 2018 - 24
IEEE Robotics & Automation Magazine - September 2018 - 25
IEEE Robotics & Automation Magazine - September 2018 - 26
IEEE Robotics & Automation Magazine - September 2018 - 27
IEEE Robotics & Automation Magazine - September 2018 - 28
IEEE Robotics & Automation Magazine - September 2018 - 29
IEEE Robotics & Automation Magazine - September 2018 - 30
IEEE Robotics & Automation Magazine - September 2018 - 31
IEEE Robotics & Automation Magazine - September 2018 - 32
IEEE Robotics & Automation Magazine - September 2018 - 33
IEEE Robotics & Automation Magazine - September 2018 - 34
IEEE Robotics & Automation Magazine - September 2018 - 35
IEEE Robotics & Automation Magazine - September 2018 - 36
IEEE Robotics & Automation Magazine - September 2018 - 37
IEEE Robotics & Automation Magazine - September 2018 - 38
IEEE Robotics & Automation Magazine - September 2018 - 39
IEEE Robotics & Automation Magazine - September 2018 - 40
IEEE Robotics & Automation Magazine - September 2018 - 41
IEEE Robotics & Automation Magazine - September 2018 - 42
IEEE Robotics & Automation Magazine - September 2018 - 43
IEEE Robotics & Automation Magazine - September 2018 - 44
IEEE Robotics & Automation Magazine - September 2018 - 45
IEEE Robotics & Automation Magazine - September 2018 - 46
IEEE Robotics & Automation Magazine - September 2018 - 47
IEEE Robotics & Automation Magazine - September 2018 - 48
IEEE Robotics & Automation Magazine - September 2018 - 49
IEEE Robotics & Automation Magazine - September 2018 - 50
IEEE Robotics & Automation Magazine - September 2018 - 51
IEEE Robotics & Automation Magazine - September 2018 - 52
IEEE Robotics & Automation Magazine - September 2018 - 53
IEEE Robotics & Automation Magazine - September 2018 - 54
IEEE Robotics & Automation Magazine - September 2018 - 55
IEEE Robotics & Automation Magazine - September 2018 - 56
IEEE Robotics & Automation Magazine - September 2018 - 57
IEEE Robotics & Automation Magazine - September 2018 - 58
IEEE Robotics & Automation Magazine - September 2018 - 59
IEEE Robotics & Automation Magazine - September 2018 - 60
IEEE Robotics & Automation Magazine - September 2018 - 61
IEEE Robotics & Automation Magazine - September 2018 - 62
IEEE Robotics & Automation Magazine - September 2018 - 63
IEEE Robotics & Automation Magazine - September 2018 - 64
IEEE Robotics & Automation Magazine - September 2018 - 65
IEEE Robotics & Automation Magazine - September 2018 - 66
IEEE Robotics & Automation Magazine - September 2018 - 67
IEEE Robotics & Automation Magazine - September 2018 - 68
IEEE Robotics & Automation Magazine - September 2018 - 69
IEEE Robotics & Automation Magazine - September 2018 - 70
IEEE Robotics & Automation Magazine - September 2018 - 71
IEEE Robotics & Automation Magazine - September 2018 - 72
IEEE Robotics & Automation Magazine - September 2018 - 73
IEEE Robotics & Automation Magazine - September 2018 - 74
IEEE Robotics & Automation Magazine - September 2018 - 75
IEEE Robotics & Automation Magazine - September 2018 - 76
IEEE Robotics & Automation Magazine - September 2018 - 77
IEEE Robotics & Automation Magazine - September 2018 - 78
IEEE Robotics & Automation Magazine - September 2018 - 79
IEEE Robotics & Automation Magazine - September 2018 - 80
IEEE Robotics & Automation Magazine - September 2018 - 81
IEEE Robotics & Automation Magazine - September 2018 - 82
IEEE Robotics & Automation Magazine - September 2018 - 83
IEEE Robotics & Automation Magazine - September 2018 - 84
IEEE Robotics & Automation Magazine - September 2018 - 85
IEEE Robotics & Automation Magazine - September 2018 - 86
IEEE Robotics & Automation Magazine - September 2018 - 87
IEEE Robotics & Automation Magazine - September 2018 - 88
IEEE Robotics & Automation Magazine - September 2018 - 89
IEEE Robotics & Automation Magazine - September 2018 - 90
IEEE Robotics & Automation Magazine - September 2018 - 91
IEEE Robotics & Automation Magazine - September 2018 - 92
IEEE Robotics & Automation Magazine - September 2018 - 93
IEEE Robotics & Automation Magazine - September 2018 - 94
IEEE Robotics & Automation Magazine - September 2018 - 95
IEEE Robotics & Automation Magazine - September 2018 - 96
IEEE Robotics & Automation Magazine - September 2018 - 97
IEEE Robotics & Automation Magazine - September 2018 - 98
IEEE Robotics & Automation Magazine - September 2018 - 99
IEEE Robotics & Automation Magazine - September 2018 - 100
IEEE Robotics & Automation Magazine - September 2018 - 101
IEEE Robotics & Automation Magazine - September 2018 - 102
IEEE Robotics & Automation Magazine - September 2018 - 103
IEEE Robotics & Automation Magazine - September 2018 - 104
IEEE Robotics & Automation Magazine - September 2018 - 105
IEEE Robotics & Automation Magazine - September 2018 - 106
IEEE Robotics & Automation Magazine - September 2018 - 107
IEEE Robotics & Automation Magazine - September 2018 - 108
IEEE Robotics & Automation Magazine - September 2018 - 109
IEEE Robotics & Automation Magazine - September 2018 - 110
IEEE Robotics & Automation Magazine - September 2018 - 111
IEEE Robotics & Automation Magazine - September 2018 - 112
IEEE Robotics & Automation Magazine - September 2018 - 113
IEEE Robotics & Automation Magazine - September 2018 - 114
IEEE Robotics & Automation Magazine - September 2018 - 115
IEEE Robotics & Automation Magazine - September 2018 - 116
IEEE Robotics & Automation Magazine - September 2018 - Cover3
IEEE Robotics & Automation Magazine - September 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com