IEEE Robotics & Automation Magazine - September 2018 - 79
improved control methods and introducing mobile magnets
with longer steering distances.
Outlook
Magnetic actuation methods are finally transitioning from
being mere research interests to actual clinical tools. Magnetic
actuation and steering systems have been incorporated in various applications, such as the use of catheters as scanning
instruments for optical imaging techniques [86], assisting in
the placement accuracy of coronary stents [87], and the use of
catheter ablation (with force sensing catheter tips) for the
treatment of symptomatic atrial fibrillation [88]. Other studies have also demonstrated the use of radio-frequency ablation magnetic catheters [31], precise and reproducible catheter
manipulation for endocardial mapping [77], and endovascular navigation [23]. The findings of magnetic actuation have
improved the study of electrophysiology for diagnostic and
therapeutic purposes [89], [90], as well as automatic angle
adjustment and pointing [91], [92].
When compared to standard catheter systems, magnetic
systems provide an increased level of control, decreased
device sizes, faster procedure completion, and increased safety [17], [44]. Early studies using remote magnetic navigation
for the ablation of various types of arrhythmias have demonstrated improved safety and equivalent efficacy when compared to manual techniques [93], [94]. Magnetically actuated
catheters are safer than pull-wire and smart material-actuated
catheters, which require a specific stiffness to maintain the
catheter shape during cardiovascular interventions [51].
With the incorporation of improved automatic catheter
actuation technology, it is expected that surgical procedure
durations and radiation exposure will decrease. Combining
this technology with more effective imaging modalities, e.g.,
enhanced US imaging, MR-compatible robotics, and realtime shape sensing for flexible instruments [95], may significantly improve clinical outcomes. In some cases, stabilization
of the catheter tip requires position feedback and a relatively
fast control rate. To address this, studies have presented miniature sensors inside the catheter body [96]. Fiber Bragg grating sensors can be used to acquire information about the
interaction forces and the shape of the instrument.
The realization of alternative automatic navigation during closed-loop steering of continuum manipulators under
the guidance of a clinically relevant tracking modality, can
be introduced in future work. Existing tracking and control
systems can be replaced with a 3-D-US imaging system to
overcome the difficulties presented by an active cardiac
environment, e.g., continuous blood flow and beating heart
motion. Electromagnetic coils can then be implemented
together with lightweight, flexible, and collaborative industrial robots that let the user automate repetitive and complex tasks in multiple DoF. In the same way, permanent
magnets can be attached to robot end effectors to provide a
constant magnetic field. Finally, catheter designs can be
improved and fabricated to extend the range of applications. Catheter tip bending studies, with a focus on deflec-
tion angles, the incorporation of microcoils along the
catheter body, and multimagnet configurations will be
achieved in future applications.
Conclusions
An overview of different approaches to the improvement of
the magnetic steering, actuation, and image-guided tracking
of catheters was presented in this article. Several endovascular
surgery-based research publications were discussed according
to predefined categories, and similar studies and related work
in the field of endovascular surgery were researched. Their
limitations and proposed solutions were summarized and
evaluated according to the type of actuation systems they
incorporated, their intended clinical applications, and the
imaging modalities for visualization. The potential for other
areas in endovascular interventions are stem cell therapy, difficult coronary artery procedures, drug delivery, and tissue
biopsy. Even though these systems are only the first step to
magnetic navigation with high performance, the current tested principles and results seem to confirm that the magnetic
actuation methods for surgical catheters are valid and should
be considered as a milestone in the development of safer,
automated procedures.
Acknowledgment
This work was supported by funds from The Netherlands
Organization for Scientific Research (Innovational Research
Incentives Scheme-VIDI: SAMURAI project # 14855).
References
[1] R. J. Lederman, M. A. Guttman, D. C. Peters, R. B. Thompson, J. M.
Sorger, A. J. Dick, V. K. Raman, and E. R. McVeigh, "Catheter-based
endomyocardial injection with real-time magnetic resonance imaging," Circulation, vol. 105, no. 11, pp. 1282-1284, 2002.
[2] J. A. Kaufman, Endovascular Intervention: Basic Concepts and Techniques. St. Louis, MO: Mosby, 2001.
[3] S. R. Atmakuri, E. I. Lev, C. Alviar, E. Ibarra, A. E. Raizner, S. L. Solomon, and N. S. Kleiman, "Initial experience with a magnetic navigation
system for percutaneous coronary intervention in complex coronary
artery lesions," J. Amer. College Cardiology, vol. 47, no. 3, pp. 515-521, 2006.
[4] C. D. Liapis, E. D. Avgerinos, and A. Chatziioannou, "The aortic
arch: Markers, imaging, and procedure planning for carotid intervention," Vascular Disease Manage., vol. 6, no. 1, 2009.
[5] N. Gudino, J. Heilman, J. Derakhshan, J. L. Sunshine, J. L. Duerk,
and M. A. Griswold, "Control of intravascular catheters using an array
of active steering coils," Med. Physics, vol. 38, no. 7, pp. 4215-4224, 2011.
[6] F. J. Criado, E. P. Wilson, O. Abul-Khoudoud, C. Barker, J. Carpenter, and R. Fairman, "Brachial artery catheterization to facilitate endovascular grafting of abdominal aortic aneurysm: Safety and rationale,"
J. Vascular Surgery, vol. 32, no. 6, pp. 1137-1141, 2000.
[7] St. Jude Medical. (2016). AGILIS NXT steerable introducer. [Online].
Available: https://www.sjmglobal.com
[8] Medtronic. (2016). Launcher coronary guide catheter. [Online]. Available: http://www.medtronic.com
[9] T. Kimura, S. Takatsuki, A. Oishi, M. Negishi, S. Kashimura, Y.
Katsumata, T. Nishiyama, N. Nishiyama, Y. Tanimoto, Y. Aizawa, and
september 2018
*
IEEE ROBOTICS & AUTOMATION MAGAZINE
*
79
https://www.sjmglobal.com
http://www.medtronic.com
IEEE Robotics & Automation Magazine - September 2018
Table of Contents for the Digital Edition of IEEE Robotics & Automation Magazine - September 2018
Contents
IEEE Robotics & Automation Magazine - September 2018 - Cover1
IEEE Robotics & Automation Magazine - September 2018 - Cover2
IEEE Robotics & Automation Magazine - September 2018 - Contents
IEEE Robotics & Automation Magazine - September 2018 - 2
IEEE Robotics & Automation Magazine - September 2018 - 3
IEEE Robotics & Automation Magazine - September 2018 - 4
IEEE Robotics & Automation Magazine - September 2018 - 5
IEEE Robotics & Automation Magazine - September 2018 - 6
IEEE Robotics & Automation Magazine - September 2018 - 7
IEEE Robotics & Automation Magazine - September 2018 - 8
IEEE Robotics & Automation Magazine - September 2018 - 9
IEEE Robotics & Automation Magazine - September 2018 - 10
IEEE Robotics & Automation Magazine - September 2018 - 11
IEEE Robotics & Automation Magazine - September 2018 - 12
IEEE Robotics & Automation Magazine - September 2018 - 13
IEEE Robotics & Automation Magazine - September 2018 - 14
IEEE Robotics & Automation Magazine - September 2018 - 15
IEEE Robotics & Automation Magazine - September 2018 - 16
IEEE Robotics & Automation Magazine - September 2018 - 17
IEEE Robotics & Automation Magazine - September 2018 - 18
IEEE Robotics & Automation Magazine - September 2018 - 19
IEEE Robotics & Automation Magazine - September 2018 - 20
IEEE Robotics & Automation Magazine - September 2018 - 21
IEEE Robotics & Automation Magazine - September 2018 - 22
IEEE Robotics & Automation Magazine - September 2018 - 23
IEEE Robotics & Automation Magazine - September 2018 - 24
IEEE Robotics & Automation Magazine - September 2018 - 25
IEEE Robotics & Automation Magazine - September 2018 - 26
IEEE Robotics & Automation Magazine - September 2018 - 27
IEEE Robotics & Automation Magazine - September 2018 - 28
IEEE Robotics & Automation Magazine - September 2018 - 29
IEEE Robotics & Automation Magazine - September 2018 - 30
IEEE Robotics & Automation Magazine - September 2018 - 31
IEEE Robotics & Automation Magazine - September 2018 - 32
IEEE Robotics & Automation Magazine - September 2018 - 33
IEEE Robotics & Automation Magazine - September 2018 - 34
IEEE Robotics & Automation Magazine - September 2018 - 35
IEEE Robotics & Automation Magazine - September 2018 - 36
IEEE Robotics & Automation Magazine - September 2018 - 37
IEEE Robotics & Automation Magazine - September 2018 - 38
IEEE Robotics & Automation Magazine - September 2018 - 39
IEEE Robotics & Automation Magazine - September 2018 - 40
IEEE Robotics & Automation Magazine - September 2018 - 41
IEEE Robotics & Automation Magazine - September 2018 - 42
IEEE Robotics & Automation Magazine - September 2018 - 43
IEEE Robotics & Automation Magazine - September 2018 - 44
IEEE Robotics & Automation Magazine - September 2018 - 45
IEEE Robotics & Automation Magazine - September 2018 - 46
IEEE Robotics & Automation Magazine - September 2018 - 47
IEEE Robotics & Automation Magazine - September 2018 - 48
IEEE Robotics & Automation Magazine - September 2018 - 49
IEEE Robotics & Automation Magazine - September 2018 - 50
IEEE Robotics & Automation Magazine - September 2018 - 51
IEEE Robotics & Automation Magazine - September 2018 - 52
IEEE Robotics & Automation Magazine - September 2018 - 53
IEEE Robotics & Automation Magazine - September 2018 - 54
IEEE Robotics & Automation Magazine - September 2018 - 55
IEEE Robotics & Automation Magazine - September 2018 - 56
IEEE Robotics & Automation Magazine - September 2018 - 57
IEEE Robotics & Automation Magazine - September 2018 - 58
IEEE Robotics & Automation Magazine - September 2018 - 59
IEEE Robotics & Automation Magazine - September 2018 - 60
IEEE Robotics & Automation Magazine - September 2018 - 61
IEEE Robotics & Automation Magazine - September 2018 - 62
IEEE Robotics & Automation Magazine - September 2018 - 63
IEEE Robotics & Automation Magazine - September 2018 - 64
IEEE Robotics & Automation Magazine - September 2018 - 65
IEEE Robotics & Automation Magazine - September 2018 - 66
IEEE Robotics & Automation Magazine - September 2018 - 67
IEEE Robotics & Automation Magazine - September 2018 - 68
IEEE Robotics & Automation Magazine - September 2018 - 69
IEEE Robotics & Automation Magazine - September 2018 - 70
IEEE Robotics & Automation Magazine - September 2018 - 71
IEEE Robotics & Automation Magazine - September 2018 - 72
IEEE Robotics & Automation Magazine - September 2018 - 73
IEEE Robotics & Automation Magazine - September 2018 - 74
IEEE Robotics & Automation Magazine - September 2018 - 75
IEEE Robotics & Automation Magazine - September 2018 - 76
IEEE Robotics & Automation Magazine - September 2018 - 77
IEEE Robotics & Automation Magazine - September 2018 - 78
IEEE Robotics & Automation Magazine - September 2018 - 79
IEEE Robotics & Automation Magazine - September 2018 - 80
IEEE Robotics & Automation Magazine - September 2018 - 81
IEEE Robotics & Automation Magazine - September 2018 - 82
IEEE Robotics & Automation Magazine - September 2018 - 83
IEEE Robotics & Automation Magazine - September 2018 - 84
IEEE Robotics & Automation Magazine - September 2018 - 85
IEEE Robotics & Automation Magazine - September 2018 - 86
IEEE Robotics & Automation Magazine - September 2018 - 87
IEEE Robotics & Automation Magazine - September 2018 - 88
IEEE Robotics & Automation Magazine - September 2018 - 89
IEEE Robotics & Automation Magazine - September 2018 - 90
IEEE Robotics & Automation Magazine - September 2018 - 91
IEEE Robotics & Automation Magazine - September 2018 - 92
IEEE Robotics & Automation Magazine - September 2018 - 93
IEEE Robotics & Automation Magazine - September 2018 - 94
IEEE Robotics & Automation Magazine - September 2018 - 95
IEEE Robotics & Automation Magazine - September 2018 - 96
IEEE Robotics & Automation Magazine - September 2018 - 97
IEEE Robotics & Automation Magazine - September 2018 - 98
IEEE Robotics & Automation Magazine - September 2018 - 99
IEEE Robotics & Automation Magazine - September 2018 - 100
IEEE Robotics & Automation Magazine - September 2018 - 101
IEEE Robotics & Automation Magazine - September 2018 - 102
IEEE Robotics & Automation Magazine - September 2018 - 103
IEEE Robotics & Automation Magazine - September 2018 - 104
IEEE Robotics & Automation Magazine - September 2018 - 105
IEEE Robotics & Automation Magazine - September 2018 - 106
IEEE Robotics & Automation Magazine - September 2018 - 107
IEEE Robotics & Automation Magazine - September 2018 - 108
IEEE Robotics & Automation Magazine - September 2018 - 109
IEEE Robotics & Automation Magazine - September 2018 - 110
IEEE Robotics & Automation Magazine - September 2018 - 111
IEEE Robotics & Automation Magazine - September 2018 - 112
IEEE Robotics & Automation Magazine - September 2018 - 113
IEEE Robotics & Automation Magazine - September 2018 - 114
IEEE Robotics & Automation Magazine - September 2018 - 115
IEEE Robotics & Automation Magazine - September 2018 - 116
IEEE Robotics & Automation Magazine - September 2018 - Cover3
IEEE Robotics & Automation Magazine - September 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2023
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2022
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2021
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2020
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2019
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2018
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2017
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2016
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2015
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2014
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2013
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2012
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_june2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_march2011
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_december2010
https://www.nxtbook.com/nxtbooks/ieee/roboticsautomation_september2010
https://www.nxtbookmedia.com