Signal Processing - January 2016 - 126
EMSE (dB)
-32
-34
le
vab
SE
EM
LMS Achievable EMSE
e
S
RL
-36
hi
Ac
µ0-LMS
β0-RLS
Combination
Combination
Exclusive Area
-38
0
0.2
0.4
α
0.6
0.8
1
[fig3] the tracking performance of a combination of lms and
rls filters when q smoothly changes between R -1 (for a = 0)
and r (for a = 1) . the performance of optimally adjusted filters
is depicted with curves. the blue and light green regions
represent emses that can be obtained with lms and rls filters,
respectively, whereas the dark green area comprises feasible
emse values for both lms and rls filters. finally, the red region
contains emse values that can be obtained with combinations of
lms and rls (but not with these filters individually).
we can reinterpret the adaptation of m (n) as a "second layer"
adaptive filter of length one, so that in principle any adaptive rule
can be used for adjusting the mixing parameter. However, this filtering problem has some particularities, specifically, the strong
and time-varying correlation between y 1 (n) and y 2 (n). This
implies that the power of the difference signal, [y 1 (n) - y 2 (n)], is
also time-varying depending, e.g., on the signal-to-noise conditions and on whether the individual filters are operating in convergence phase or steady state, etc.
Using a stochastic gradient search to minimize the quadratic
error e 2 (n) of the overall filter, defined in (4), [16] proposed the
following adaptation for the mixing parameter in an affine combination (i.e., without imposing restrictions on m (n)),
n m 2e 2 (n)
m (n + 1) = m (n) 2 2m (n)
= m (n) + n m e (n) [y 1 (n) - y 2 (n)] .
(14)
We will refer to this case as aff-LMS adaptation, with n m being a
step-size parameter. As discussed in [16], a large step size should
be used in this rule to ensure an adequate behavior of the affine
combination. However, this can cause instability during the initial
convergence of the algorithm, which was circumvented in [16] by
[table 4] the Power normalized adaPtation of m (n)
in affine combinations and of auxiliary Parameter
a (n) in convex combinations. unnormalized rules
aff-lms and cvx-lms are obtained setting p (n) = 1.
algorithm
uPdate equations
aff-PN-LMS [18]
m (n + 1) = m (n) +
nm
e (n) [y 1 (n) - y 2 (n)]
f + p (n)
p (n) = h p (n - 1) + (1 - h) [y 1 (n) - y 2 (n)] 2
0 % h 1 1; f 2 0 is a sMaLL Constant
cvx-PN-LMS [37]
a (n + 1) = a (n) +
na
p (n)
m (n) [1 - m (n)] e (n) [y 1 (n) - y 2 (n)]
constraining m (n) to be less than or equal to one. Even with this
constraint, the combination scheme may stay away from the optimum EMSE (see, e.g., [18]). This is a direct consequence of the
time-varying power of [y 1 (n) - y 2 (n)], which makes the selection
of n m a difficult task.
To obtain a more robust scheme, it is possible to recur to normalized adaptation schemes. Using a rough (low-pass filtered) estimation of the power of [y 1 (n) - y 2 (n)], a power normalized
version of aff-LMS was proposed in [18], and is summarized in
Table 4. This aff-PN-LMS algorithm does not impose any constraints on m (n), is less sensitive to the filtering scenario, and
converges in the mean-square sense if the step size is selected in
the interval 0 1 n m 1 2.
Rather than directly adjust m (n) as in the affine case, convex
combination schemes recur to activation functions to keep the
mixing parameter in the range of interest. For example, [12] proposed an adaptation scheme for an auxiliary parameter a (n) that
is related to m (n) via the sigmoid function
m (n) = sgm [a (n)] =
(15)
Recurring to this activation function (or similar ones), a (n) can
be adapted without constraints, and m (n) will be automatically
kept inside the interval (0, 1) at all times. Using a gradient descent
method to minimize the quadratic error of the overall filter,
e 2 (n), two algorithms were proposed to update a (n): the cvxLMS algorithm [12] and its power normalized version, cvx-PNLMS [37], whose update equations are given by
a (n + 1) = a (n) + n a m (n)
[1 - m (n)] e (n) [y 1 (n) - y 2 (n)],
a (n + 1) = a (n) +
(cvx-LMS)
(16)
(cvx-PN-LMS)
(17)
na
m (n)
p (n)
[1 - m (n)] e (n) [y 1 (n) - y 2 (n)] .
Here, p (n) is a low-pass filtered estimation of the power of
[y 1 (n) - y 2 (n)] . These algorithms are also shown in Table 4 for
further reference. Compared to the cvx-LMS scheme, cvx-PNLMS is more robust to signal-to-noise ratio (SNR) changes, and
simplifies the selection of step size n a [37]. [According to the
linear regression model (1), the SNR is defined as SNR =
[w
http://www.1.pn
Table of Contents for the Digital Edition of Signal Processing - January 2016
Signal Processing - January 2016 - Cover1
Signal Processing - January 2016 - Cover2
Signal Processing - January 2016 - 1
Signal Processing - January 2016 - 2
Signal Processing - January 2016 - 3
Signal Processing - January 2016 - 4
Signal Processing - January 2016 - 5
Signal Processing - January 2016 - 6
Signal Processing - January 2016 - 7
Signal Processing - January 2016 - 8
Signal Processing - January 2016 - 9
Signal Processing - January 2016 - 10
Signal Processing - January 2016 - 11
Signal Processing - January 2016 - 12
Signal Processing - January 2016 - 13
Signal Processing - January 2016 - 14
Signal Processing - January 2016 - 15
Signal Processing - January 2016 - 16
Signal Processing - January 2016 - 17
Signal Processing - January 2016 - 18
Signal Processing - January 2016 - 19
Signal Processing - January 2016 - 20
Signal Processing - January 2016 - 21
Signal Processing - January 2016 - 22
Signal Processing - January 2016 - 23
Signal Processing - January 2016 - 24
Signal Processing - January 2016 - 25
Signal Processing - January 2016 - 26
Signal Processing - January 2016 - 27
Signal Processing - January 2016 - 28
Signal Processing - January 2016 - 29
Signal Processing - January 2016 - 30
Signal Processing - January 2016 - 31
Signal Processing - January 2016 - 32
Signal Processing - January 2016 - 33
Signal Processing - January 2016 - 34
Signal Processing - January 2016 - 35
Signal Processing - January 2016 - 36
Signal Processing - January 2016 - 37
Signal Processing - January 2016 - 38
Signal Processing - January 2016 - 39
Signal Processing - January 2016 - 40
Signal Processing - January 2016 - 41
Signal Processing - January 2016 - 42
Signal Processing - January 2016 - 43
Signal Processing - January 2016 - 44
Signal Processing - January 2016 - 45
Signal Processing - January 2016 - 46
Signal Processing - January 2016 - 47
Signal Processing - January 2016 - 48
Signal Processing - January 2016 - 49
Signal Processing - January 2016 - 50
Signal Processing - January 2016 - 51
Signal Processing - January 2016 - 52
Signal Processing - January 2016 - 53
Signal Processing - January 2016 - 54
Signal Processing - January 2016 - 55
Signal Processing - January 2016 - 56
Signal Processing - January 2016 - 57
Signal Processing - January 2016 - 58
Signal Processing - January 2016 - 59
Signal Processing - January 2016 - 60
Signal Processing - January 2016 - 61
Signal Processing - January 2016 - 62
Signal Processing - January 2016 - 63
Signal Processing - January 2016 - 64
Signal Processing - January 2016 - 65
Signal Processing - January 2016 - 66
Signal Processing - January 2016 - 67
Signal Processing - January 2016 - 68
Signal Processing - January 2016 - 69
Signal Processing - January 2016 - 70
Signal Processing - January 2016 - 71
Signal Processing - January 2016 - 72
Signal Processing - January 2016 - 73
Signal Processing - January 2016 - 74
Signal Processing - January 2016 - 75
Signal Processing - January 2016 - 76
Signal Processing - January 2016 - 77
Signal Processing - January 2016 - 78
Signal Processing - January 2016 - 79
Signal Processing - January 2016 - 80
Signal Processing - January 2016 - 81
Signal Processing - January 2016 - 82
Signal Processing - January 2016 - 83
Signal Processing - January 2016 - 84
Signal Processing - January 2016 - 85
Signal Processing - January 2016 - 86
Signal Processing - January 2016 - 87
Signal Processing - January 2016 - 88
Signal Processing - January 2016 - 89
Signal Processing - January 2016 - 90
Signal Processing - January 2016 - 91
Signal Processing - January 2016 - 92
Signal Processing - January 2016 - 93
Signal Processing - January 2016 - 94
Signal Processing - January 2016 - 95
Signal Processing - January 2016 - 96
Signal Processing - January 2016 - 97
Signal Processing - January 2016 - 98
Signal Processing - January 2016 - 99
Signal Processing - January 2016 - 100
Signal Processing - January 2016 - 101
Signal Processing - January 2016 - 102
Signal Processing - January 2016 - 103
Signal Processing - January 2016 - 104
Signal Processing - January 2016 - 105
Signal Processing - January 2016 - 106
Signal Processing - January 2016 - 107
Signal Processing - January 2016 - 108
Signal Processing - January 2016 - 109
Signal Processing - January 2016 - 110
Signal Processing - January 2016 - 111
Signal Processing - January 2016 - 112
Signal Processing - January 2016 - 113
Signal Processing - January 2016 - 114
Signal Processing - January 2016 - 115
Signal Processing - January 2016 - 116
Signal Processing - January 2016 - 117
Signal Processing - January 2016 - 118
Signal Processing - January 2016 - 119
Signal Processing - January 2016 - 120
Signal Processing - January 2016 - 121
Signal Processing - January 2016 - 122
Signal Processing - January 2016 - 123
Signal Processing - January 2016 - 124
Signal Processing - January 2016 - 125
Signal Processing - January 2016 - 126
Signal Processing - January 2016 - 127
Signal Processing - January 2016 - 128
Signal Processing - January 2016 - 129
Signal Processing - January 2016 - 130
Signal Processing - January 2016 - 131
Signal Processing - January 2016 - 132
Signal Processing - January 2016 - 133
Signal Processing - January 2016 - 134
Signal Processing - January 2016 - 135
Signal Processing - January 2016 - 136
Signal Processing - January 2016 - 137
Signal Processing - January 2016 - 138
Signal Processing - January 2016 - 139
Signal Processing - January 2016 - 140
Signal Processing - January 2016 - 141
Signal Processing - January 2016 - 142
Signal Processing - January 2016 - 143
Signal Processing - January 2016 - 144
Signal Processing - January 2016 - 145
Signal Processing - January 2016 - 146
Signal Processing - January 2016 - 147
Signal Processing - January 2016 - 148
Signal Processing - January 2016 - 149
Signal Processing - January 2016 - 150
Signal Processing - January 2016 - 151
Signal Processing - January 2016 - 152
Signal Processing - January 2016 - 153
Signal Processing - January 2016 - 154
Signal Processing - January 2016 - 155
Signal Processing - January 2016 - 156
Signal Processing - January 2016 - 157
Signal Processing - January 2016 - 158
Signal Processing - January 2016 - 159
Signal Processing - January 2016 - 160
Signal Processing - January 2016 - 161
Signal Processing - January 2016 - 162
Signal Processing - January 2016 - 163
Signal Processing - January 2016 - 164
Signal Processing - January 2016 - 165
Signal Processing - January 2016 - 166
Signal Processing - January 2016 - 167
Signal Processing - January 2016 - 168
Signal Processing - January 2016 - Cover3
Signal Processing - January 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com