Signal Processing - January 2016 - 138

VF (µ1 and µq)

VF (µ2 and µq)

LF (µ1)

LF (µ2)

Combination (CK)

30

ERLE (dB)

25
20
15
10
5

Mixing Parameters

0

Only Linear Distortion
LNLR = ∞ dB

Low Nonlinear Distortion
LNLR = 25 dB
(a)

High Nonlinear Distortion
LNLR = 0 dB

1
λ1(n)
λ2(n)

0.5

0

0

30

60
Time (s) →
(b)

90

120

[fig16] the performance of the proposed scheme as a function of the linear-to-nonlinear ratio (lnlr) of echo powers, including an
abrupt change in the room impulse response at t = 60 s. (a) the echo return loss enhancement (erle) achieved by the cks scheme and
of all possible filters (linear and vfs) using its constituent kernels. (b) time evolution of the mixing parameters. in this experiment, we
employ laplacian speech-like colored noise as input signal; experiments with real speech can be found in [25].

linear and nonlinear filters. In addition, the algorithm shows a
suitable reconvergence when the room impulse response abruptly
changes, thanks to the combination of two linear kernels with different step sizes, as it can be seen after t = 60 s.
conclusions and oPen Problems
Combinations of adaptive filters constitute a powerful approach to
improve the performance of adaptive filters. In this article, we
have reviewed some of the most popular combination schemes,
highlighting their theoretical properties and limits. Practical algorithms to combine adaptive filters need to implement estimation
methods to adjust the combination layer, taking into account the
possibly time-varying conditions in which the filter operates.
We have reviewed several of the methods that have been proposed in the literature, paying special attention to gradient methods. Power-normalized algorithms are particularly interesting,
since they simplify the selection of parameters and result in a more
robust behavior when the statistics of the filtering scenario are
(partly) unknown, which is frequently the case. The versatility of
the approach has been demonstrated through several examples in a
variety of applications. We have seen that, in all studied scenarios,
combination schemes offer competitive performance when compared to state-of-the-art methods for each application. This fact,
together with the inherent simplicity of the approach, make combination structures attractive for demanding applications requiring

enhanced performance, as illustrated by examples and references
given in the article.
In our opinion, some of the most interesting open problems to
be addressed are:
■ the selection and design of component filters with reduced
cross-EMSE, with the goal to minimize the overall EMSE
■ providing and exploiting strategies to reduce the cost of
combined schemes, trying to develop new structures whose
complexity is close to that of an individual filter
■ extensions to other application domains where different kinds
of compromises and performance tradeoffs may be present.
acknowledgments
The work of Jerónimo Arenas-García and Luis Azpicueta-Ruiz was
partially supported by the Spanish Ministry of Economy and Competitiveness (under projects TEC2011-22480 and PRIPIBIN-2011-1266. The work of Magno M.T. Silva was partially
supported by CNPq under Grant 304275/2014-0 and by FAPESP
under Grant 2012/24835-1. The work of Vítor H. Nascimento was
partially supported by CNPq under grant 306268/2014-0 and
FAPESP under grant 2014/04256-2. The work of Ali Sayed was
supported in part by NSF grants CCF-1011918 and ECCS1407712. We are grateful to the colleagues with whom we have
shared discussions and coauthorship of papers along this research
line, especially Prof. Aníbal R. Figueiras-Vidal.

IEEE SIGNAL PROCESSING MAGAZINE [138] jANuARy 2016



Table of Contents for the Digital Edition of Signal Processing - January 2016

Signal Processing - January 2016 - Cover1
Signal Processing - January 2016 - Cover2
Signal Processing - January 2016 - 1
Signal Processing - January 2016 - 2
Signal Processing - January 2016 - 3
Signal Processing - January 2016 - 4
Signal Processing - January 2016 - 5
Signal Processing - January 2016 - 6
Signal Processing - January 2016 - 7
Signal Processing - January 2016 - 8
Signal Processing - January 2016 - 9
Signal Processing - January 2016 - 10
Signal Processing - January 2016 - 11
Signal Processing - January 2016 - 12
Signal Processing - January 2016 - 13
Signal Processing - January 2016 - 14
Signal Processing - January 2016 - 15
Signal Processing - January 2016 - 16
Signal Processing - January 2016 - 17
Signal Processing - January 2016 - 18
Signal Processing - January 2016 - 19
Signal Processing - January 2016 - 20
Signal Processing - January 2016 - 21
Signal Processing - January 2016 - 22
Signal Processing - January 2016 - 23
Signal Processing - January 2016 - 24
Signal Processing - January 2016 - 25
Signal Processing - January 2016 - 26
Signal Processing - January 2016 - 27
Signal Processing - January 2016 - 28
Signal Processing - January 2016 - 29
Signal Processing - January 2016 - 30
Signal Processing - January 2016 - 31
Signal Processing - January 2016 - 32
Signal Processing - January 2016 - 33
Signal Processing - January 2016 - 34
Signal Processing - January 2016 - 35
Signal Processing - January 2016 - 36
Signal Processing - January 2016 - 37
Signal Processing - January 2016 - 38
Signal Processing - January 2016 - 39
Signal Processing - January 2016 - 40
Signal Processing - January 2016 - 41
Signal Processing - January 2016 - 42
Signal Processing - January 2016 - 43
Signal Processing - January 2016 - 44
Signal Processing - January 2016 - 45
Signal Processing - January 2016 - 46
Signal Processing - January 2016 - 47
Signal Processing - January 2016 - 48
Signal Processing - January 2016 - 49
Signal Processing - January 2016 - 50
Signal Processing - January 2016 - 51
Signal Processing - January 2016 - 52
Signal Processing - January 2016 - 53
Signal Processing - January 2016 - 54
Signal Processing - January 2016 - 55
Signal Processing - January 2016 - 56
Signal Processing - January 2016 - 57
Signal Processing - January 2016 - 58
Signal Processing - January 2016 - 59
Signal Processing - January 2016 - 60
Signal Processing - January 2016 - 61
Signal Processing - January 2016 - 62
Signal Processing - January 2016 - 63
Signal Processing - January 2016 - 64
Signal Processing - January 2016 - 65
Signal Processing - January 2016 - 66
Signal Processing - January 2016 - 67
Signal Processing - January 2016 - 68
Signal Processing - January 2016 - 69
Signal Processing - January 2016 - 70
Signal Processing - January 2016 - 71
Signal Processing - January 2016 - 72
Signal Processing - January 2016 - 73
Signal Processing - January 2016 - 74
Signal Processing - January 2016 - 75
Signal Processing - January 2016 - 76
Signal Processing - January 2016 - 77
Signal Processing - January 2016 - 78
Signal Processing - January 2016 - 79
Signal Processing - January 2016 - 80
Signal Processing - January 2016 - 81
Signal Processing - January 2016 - 82
Signal Processing - January 2016 - 83
Signal Processing - January 2016 - 84
Signal Processing - January 2016 - 85
Signal Processing - January 2016 - 86
Signal Processing - January 2016 - 87
Signal Processing - January 2016 - 88
Signal Processing - January 2016 - 89
Signal Processing - January 2016 - 90
Signal Processing - January 2016 - 91
Signal Processing - January 2016 - 92
Signal Processing - January 2016 - 93
Signal Processing - January 2016 - 94
Signal Processing - January 2016 - 95
Signal Processing - January 2016 - 96
Signal Processing - January 2016 - 97
Signal Processing - January 2016 - 98
Signal Processing - January 2016 - 99
Signal Processing - January 2016 - 100
Signal Processing - January 2016 - 101
Signal Processing - January 2016 - 102
Signal Processing - January 2016 - 103
Signal Processing - January 2016 - 104
Signal Processing - January 2016 - 105
Signal Processing - January 2016 - 106
Signal Processing - January 2016 - 107
Signal Processing - January 2016 - 108
Signal Processing - January 2016 - 109
Signal Processing - January 2016 - 110
Signal Processing - January 2016 - 111
Signal Processing - January 2016 - 112
Signal Processing - January 2016 - 113
Signal Processing - January 2016 - 114
Signal Processing - January 2016 - 115
Signal Processing - January 2016 - 116
Signal Processing - January 2016 - 117
Signal Processing - January 2016 - 118
Signal Processing - January 2016 - 119
Signal Processing - January 2016 - 120
Signal Processing - January 2016 - 121
Signal Processing - January 2016 - 122
Signal Processing - January 2016 - 123
Signal Processing - January 2016 - 124
Signal Processing - January 2016 - 125
Signal Processing - January 2016 - 126
Signal Processing - January 2016 - 127
Signal Processing - January 2016 - 128
Signal Processing - January 2016 - 129
Signal Processing - January 2016 - 130
Signal Processing - January 2016 - 131
Signal Processing - January 2016 - 132
Signal Processing - January 2016 - 133
Signal Processing - January 2016 - 134
Signal Processing - January 2016 - 135
Signal Processing - January 2016 - 136
Signal Processing - January 2016 - 137
Signal Processing - January 2016 - 138
Signal Processing - January 2016 - 139
Signal Processing - January 2016 - 140
Signal Processing - January 2016 - 141
Signal Processing - January 2016 - 142
Signal Processing - January 2016 - 143
Signal Processing - January 2016 - 144
Signal Processing - January 2016 - 145
Signal Processing - January 2016 - 146
Signal Processing - January 2016 - 147
Signal Processing - January 2016 - 148
Signal Processing - January 2016 - 149
Signal Processing - January 2016 - 150
Signal Processing - January 2016 - 151
Signal Processing - January 2016 - 152
Signal Processing - January 2016 - 153
Signal Processing - January 2016 - 154
Signal Processing - January 2016 - 155
Signal Processing - January 2016 - 156
Signal Processing - January 2016 - 157
Signal Processing - January 2016 - 158
Signal Processing - January 2016 - 159
Signal Processing - January 2016 - 160
Signal Processing - January 2016 - 161
Signal Processing - January 2016 - 162
Signal Processing - January 2016 - 163
Signal Processing - January 2016 - 164
Signal Processing - January 2016 - 165
Signal Processing - January 2016 - 166
Signal Processing - January 2016 - 167
Signal Processing - January 2016 - 168
Signal Processing - January 2016 - Cover3
Signal Processing - January 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com