Signal Processing - March 2016 - 111

life sciences
Antonio Stanziola, Matthieu Toulemonde, Yesna O. Yildiz,
Robert J. Eckersley, and Meng-Xing Tang

Ultrasound Imaging with Microbubbles

M

edical ultrasound (US) imaging,
also known as echography, is one
of the most frequently used frontline clinical imaging modalities and is
characterized by its safety, affordability,
accessibility, and real-time image display. Sound pulses, typically in the
megahertz range, are sent into the body
and the backscattered echoes are used to
create a tomographic image. The contrast of an US image arises from local
variations in the physical properties of
the tissues, primarily density and elasticity, revealing tissue structures at depth.
The blood flow of a living organism
contains essential information related to
tissue function and pathology. However,
as blood is a fluid composed of plasma
and blood cells that are similar to each
other acoustically, the scattering of
sound from blood is very weak compared to surrounding tissue structures.
Consequently, it is difficult to detect vessels that are smaller in size than the
pulse length, as the echoes from blood
are completely masked by the neighboring tissue response. While for big vessels
it is still possible to obtain hemodynamic
information due to the weak scattering
of blood cells, in general, the signal-tonoise ratio (SNR) is poor and the information content is limited.
To overcome the limitations of conventional US, gas bubbles of micrometer radius can be introduced into a
patient's bloodstream as agents for
contrast enhanced US imaging
(CEUS). Microbubbles (MBs) act as
resonant oscillators and scatter US
Digital Object Identifier 10.1109/MSP.2015.2496914
Date of publication: 7 March 2016

1053-5888/16©2016IEEE

signals efficiently
the gaseous core, the
The equilibrium radius
when excited at the
shell elastic properof an MB is a balancing
frequencies used in
ties, and the surface
act between the external
the clinical practice,
tension. When an US
pressure of the blood, the wave excites an MB,
typically in the range
internal pressure of the
of 1-15 MHz. They
since the bubble
are designed to have
diameter (a few nm )
gaseous core, the shell
a diameter (<7 μm)
elastic properties, and the is much smaller than
capable of passing
the clinical US wavesurface tension.
the pulmonary capillength (hundreds
laries (the smallest
of nm ), it causes a
vessels in the human body) and often
global change in the external pressure
include a lipid shell that encapsulates a
p 0 that results in an oscillation of the
low solubility gas, so as to increase
MB associated with the emission of
their longevity in the circulation.
sound waves [Figure 2(a) and (b)]. As
The use of MBs in US imaging genthe gas core is highly compressible,
erates new and exciting possibilities [1].
the bubble radius can oscillate signifiIt enables real-time imaging of blood
cantly around its equilibrium value r0
flow with unprecedented sensitivity and
if driven at or near its resonance freresolution in both large vessels and
quency, and this behavior is responsimicrovasculature and provides indicable for the strong scattering of the
tors of the perfusion of organs in, e.g.,
contrast agents.
liver [Figure 1(a) and (b)], kidney
MBs are inherently nonlinear oscil[Figure 1(c) and (d)], heart, limbs,
lation systems. Even with US amplibrain, breast, and lymphatic systems.
tudes of tens of kilopascal, well below
The safety of MBs in diagnostic US has
those typically used in clinical imagbeen well established. If the MB shell is
ing, the radius change for an MB is not
coated with specific molecules, complesymmetrical in the compression and
mentary to those expressed by the vasexpansion phases. This asymmetry is a
cular walls during specific pathological
key source of harmonic generation
processes such as the initiation of canfrom MBs.
cer or atherosclerosis, it is possible to
The MB oscillation and subsequent
bind MBs to these receptors (targeted
scattering is highly dependent on the
MBs) facilitating molecular imaging for
US parameters, including frequency
early detection and diagnosis [1].
and amplitude. A variety of analytical
models have been developed to
describe this process, most of them
MBs as nonlinear
assuming a time-invariant spherical
oscillation systems
bubble. The simplest is the Rayleigh-
The equilibrium radius of an MB is a
Plesset (RP) model, which considers a
balancing act between the external presshell-free bubble of polytropic gas in an
sure of the blood, the internal pressure of
IEEE Signal Processing Magazine

|

March 2016

|

111



Table of Contents for the Digital Edition of Signal Processing - March 2016

Signal Processing - March 2016 - Cover1
Signal Processing - March 2016 - Cover2
Signal Processing - March 2016 - 1
Signal Processing - March 2016 - 2
Signal Processing - March 2016 - 3
Signal Processing - March 2016 - 4
Signal Processing - March 2016 - 5
Signal Processing - March 2016 - 6
Signal Processing - March 2016 - 7
Signal Processing - March 2016 - 8
Signal Processing - March 2016 - 9
Signal Processing - March 2016 - 10
Signal Processing - March 2016 - 11
Signal Processing - March 2016 - 12
Signal Processing - March 2016 - 13
Signal Processing - March 2016 - 14
Signal Processing - March 2016 - 15
Signal Processing - March 2016 - 16
Signal Processing - March 2016 - 17
Signal Processing - March 2016 - 18
Signal Processing - March 2016 - 19
Signal Processing - March 2016 - 20
Signal Processing - March 2016 - 21
Signal Processing - March 2016 - 22
Signal Processing - March 2016 - 23
Signal Processing - March 2016 - 24
Signal Processing - March 2016 - 25
Signal Processing - March 2016 - 26
Signal Processing - March 2016 - 27
Signal Processing - March 2016 - 28
Signal Processing - March 2016 - 29
Signal Processing - March 2016 - 30
Signal Processing - March 2016 - 31
Signal Processing - March 2016 - 32
Signal Processing - March 2016 - 33
Signal Processing - March 2016 - 34
Signal Processing - March 2016 - 35
Signal Processing - March 2016 - 36
Signal Processing - March 2016 - 37
Signal Processing - March 2016 - 38
Signal Processing - March 2016 - 39
Signal Processing - March 2016 - 40
Signal Processing - March 2016 - 41
Signal Processing - March 2016 - 42
Signal Processing - March 2016 - 43
Signal Processing - March 2016 - 44
Signal Processing - March 2016 - 45
Signal Processing - March 2016 - 46
Signal Processing - March 2016 - 47
Signal Processing - March 2016 - 48
Signal Processing - March 2016 - 49
Signal Processing - March 2016 - 50
Signal Processing - March 2016 - 51
Signal Processing - March 2016 - 52
Signal Processing - March 2016 - 53
Signal Processing - March 2016 - 54
Signal Processing - March 2016 - 55
Signal Processing - March 2016 - 56
Signal Processing - March 2016 - 57
Signal Processing - March 2016 - 58
Signal Processing - March 2016 - 59
Signal Processing - March 2016 - 60
Signal Processing - March 2016 - 61
Signal Processing - March 2016 - 62
Signal Processing - March 2016 - 63
Signal Processing - March 2016 - 64
Signal Processing - March 2016 - 65
Signal Processing - March 2016 - 66
Signal Processing - March 2016 - 67
Signal Processing - March 2016 - 68
Signal Processing - March 2016 - 69
Signal Processing - March 2016 - 70
Signal Processing - March 2016 - 71
Signal Processing - March 2016 - 72
Signal Processing - March 2016 - 73
Signal Processing - March 2016 - 74
Signal Processing - March 2016 - 75
Signal Processing - March 2016 - 76
Signal Processing - March 2016 - 77
Signal Processing - March 2016 - 78
Signal Processing - March 2016 - 79
Signal Processing - March 2016 - 80
Signal Processing - March 2016 - 81
Signal Processing - March 2016 - 82
Signal Processing - March 2016 - 83
Signal Processing - March 2016 - 84
Signal Processing - March 2016 - 85
Signal Processing - March 2016 - 86
Signal Processing - March 2016 - 87
Signal Processing - March 2016 - 88
Signal Processing - March 2016 - 89
Signal Processing - March 2016 - 90
Signal Processing - March 2016 - 91
Signal Processing - March 2016 - 92
Signal Processing - March 2016 - 93
Signal Processing - March 2016 - 94
Signal Processing - March 2016 - 95
Signal Processing - March 2016 - 96
Signal Processing - March 2016 - 97
Signal Processing - March 2016 - 98
Signal Processing - March 2016 - 99
Signal Processing - March 2016 - 100
Signal Processing - March 2016 - 101
Signal Processing - March 2016 - 102
Signal Processing - March 2016 - 103
Signal Processing - March 2016 - 104
Signal Processing - March 2016 - 105
Signal Processing - March 2016 - 106
Signal Processing - March 2016 - 107
Signal Processing - March 2016 - 108
Signal Processing - March 2016 - 109
Signal Processing - March 2016 - 110
Signal Processing - March 2016 - 111
Signal Processing - March 2016 - 112
Signal Processing - March 2016 - 113
Signal Processing - March 2016 - 114
Signal Processing - March 2016 - 115
Signal Processing - March 2016 - 116
Signal Processing - March 2016 - 117
Signal Processing - March 2016 - 118
Signal Processing - March 2016 - 119
Signal Processing - March 2016 - 120
Signal Processing - March 2016 - 121
Signal Processing - March 2016 - 122
Signal Processing - March 2016 - 123
Signal Processing - March 2016 - 124
Signal Processing - March 2016 - 125
Signal Processing - March 2016 - 126
Signal Processing - March 2016 - 127
Signal Processing - March 2016 - 128
Signal Processing - March 2016 - Cover3
Signal Processing - March 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com