Signal Processing - March 2016 - 67
7
Panel
Discussion and conclusions
This article envisions accurate and robust indoor localization as
a key sensing modality of an AL system. It has been shown that
awareness to the signal propagation conditions enables the
robustness and allows to reduce the needed infrastructure.
Experimental, measurement-based results support the discussion of theoretical findings.
A geometry-based stochastic model of the received signal
allows the derivation of theoretical PEBs and thus provides
the theoretical background for a number of multipath-assisted
localization and tracking algorithms. More specifically, an
environment model, consisting of a geometrical model (based
on VA positions) and a measurement uncertainty model (based
on the SINR of MPCs), yields insight in the potential location
information that can be acquired at a certain position, in a
certain environment. Several algorithms have been discussed
that exploit such information: maximum likelihood localization, tracking filters with data association, and algorithms for
passive localization. The benefit of using this environmental
information has been shown.
Future 5G mm-wave communication systems could be an
ideal platform for achieving high-accuracy indoor localization with this concept. In addition to a large signal bandwidth,
beamforming capabilities are envisioned for such systems, which
can be exploited to make the localization and tracking more
robust and efficient. It becomes feasible to obtain accurate and
robust indoor localization with only a single anchor node in a
7
Panel
5
5
5
4
4
4
Anchor 1
0
0
1
2
2
1
Anchor 1
0
3 4
x [m]
(a)
5
6
7
0
1
2
3 4
x [m]
5
6
7
(b)
3
Panel
1
Cupboard
1
3
Right Wall
2
Right Wall
3
y [m]
6
Cupboard
6
y [m]
6
Cupboard
y [m]
7
has been computed by using a phased-array beamformer for
each exploited MPC. This is achieved by coherently adding the
signals at the agent-side array positions, taking into account the
relative phase shifts that correspond to the known arrival angles
of the MPCs. The figure exemplary shows that such a processing, envisioned for 5G mm-wave communication systems, can
greatly improve the robustness of the localization, since many
local maxima can be ruled out.
0
Anchor 1
2
0
Right Wall
for microwave band UWB measurements [33], highlighting
the need for online estimation (tracking) of the environment
model, as explained in the section "Simultaneous Localization
and Mapping Using Multipath Channel Information" and [34].
Figure 6(b) shows the PEB corresponding to the estimated
SINRs of Figure 6(a). The PEB is a measure of the potentially
achievable localization accuracy, hence, highly accurate single-anchor localization is possible in this scenario. The PEB
increases only slightly in the OLOS situations due to the still
significant SINR of the LOS component. Even if the LOS
component is not taken into account at all, (NLOS; the red
dash-dotted line), the agent is still localizable at centimeter
level, easily satisfying requirements of most AL applications.
A proper operation in total absence of an LOS indicates the
"good" robustness of the discussed techniques.
Figure 7 shows the likelihood (S1) for a sampled received signal r (t) as a function of position p, evaluated over the floor plan.
Figure 7(a) compares LOS and (b) OLOS conditions with (c)
OLOS with the use of beamforming. The bold black lines indicate
the directions to the anchor, thin black lines the directions to firstorder VAs, and black dashed lines the directions to second-order
VAs. The black diamonds mark the estimated positions of the agent.
Using a maximum likelihood positioning algorithm as in [24], an
error in the centimeter level is achieved (2 cm for the LOS and 3
cm for the OLOS situations). Only a small degradation results in
the OLOS case, as anticipated from the analysis of the SINR values.
The potential use of beamforming shows a different great
advantage: the multimodality of the likelihood function is
reduced, which reduces the risk of converging to a wrong local
maximum. Large modes at locations farther away from the
true agent position are suppressed due to the angular resolution of the array antenna. Note, however, that MPC delays are
still responsible for providing a high accuracy in a direction
orthogonal to the LOS path. Without the processing of multipath, we would see a smooth maximum (along the circle)
instead of a sharp peak. The likelihood function in Figure 7(c)
1
2
3 4
x [m]
5
6
7
(c)
figure 7. The likelihood function over the floor plan for (a) LOS, (b) OLOS situation, and (c) OLOS situation with phased-array beamforming. The position error of the MLE is 2 cm and 3 cm for LOS and OLOS situations, respectively. Bold black lines show the directions to the anchors, thin black line the
directions to first-order VAs, and black dashed lines the directions to second-order VAs. The black diamonds mark the estimated positions of the agent.
IEEE SIgnal ProcESSIng MagazInE
|
March 2016
|
67
Table of Contents for the Digital Edition of Signal Processing - March 2016
Signal Processing - March 2016 - Cover1
Signal Processing - March 2016 - Cover2
Signal Processing - March 2016 - 1
Signal Processing - March 2016 - 2
Signal Processing - March 2016 - 3
Signal Processing - March 2016 - 4
Signal Processing - March 2016 - 5
Signal Processing - March 2016 - 6
Signal Processing - March 2016 - 7
Signal Processing - March 2016 - 8
Signal Processing - March 2016 - 9
Signal Processing - March 2016 - 10
Signal Processing - March 2016 - 11
Signal Processing - March 2016 - 12
Signal Processing - March 2016 - 13
Signal Processing - March 2016 - 14
Signal Processing - March 2016 - 15
Signal Processing - March 2016 - 16
Signal Processing - March 2016 - 17
Signal Processing - March 2016 - 18
Signal Processing - March 2016 - 19
Signal Processing - March 2016 - 20
Signal Processing - March 2016 - 21
Signal Processing - March 2016 - 22
Signal Processing - March 2016 - 23
Signal Processing - March 2016 - 24
Signal Processing - March 2016 - 25
Signal Processing - March 2016 - 26
Signal Processing - March 2016 - 27
Signal Processing - March 2016 - 28
Signal Processing - March 2016 - 29
Signal Processing - March 2016 - 30
Signal Processing - March 2016 - 31
Signal Processing - March 2016 - 32
Signal Processing - March 2016 - 33
Signal Processing - March 2016 - 34
Signal Processing - March 2016 - 35
Signal Processing - March 2016 - 36
Signal Processing - March 2016 - 37
Signal Processing - March 2016 - 38
Signal Processing - March 2016 - 39
Signal Processing - March 2016 - 40
Signal Processing - March 2016 - 41
Signal Processing - March 2016 - 42
Signal Processing - March 2016 - 43
Signal Processing - March 2016 - 44
Signal Processing - March 2016 - 45
Signal Processing - March 2016 - 46
Signal Processing - March 2016 - 47
Signal Processing - March 2016 - 48
Signal Processing - March 2016 - 49
Signal Processing - March 2016 - 50
Signal Processing - March 2016 - 51
Signal Processing - March 2016 - 52
Signal Processing - March 2016 - 53
Signal Processing - March 2016 - 54
Signal Processing - March 2016 - 55
Signal Processing - March 2016 - 56
Signal Processing - March 2016 - 57
Signal Processing - March 2016 - 58
Signal Processing - March 2016 - 59
Signal Processing - March 2016 - 60
Signal Processing - March 2016 - 61
Signal Processing - March 2016 - 62
Signal Processing - March 2016 - 63
Signal Processing - March 2016 - 64
Signal Processing - March 2016 - 65
Signal Processing - March 2016 - 66
Signal Processing - March 2016 - 67
Signal Processing - March 2016 - 68
Signal Processing - March 2016 - 69
Signal Processing - March 2016 - 70
Signal Processing - March 2016 - 71
Signal Processing - March 2016 - 72
Signal Processing - March 2016 - 73
Signal Processing - March 2016 - 74
Signal Processing - March 2016 - 75
Signal Processing - March 2016 - 76
Signal Processing - March 2016 - 77
Signal Processing - March 2016 - 78
Signal Processing - March 2016 - 79
Signal Processing - March 2016 - 80
Signal Processing - March 2016 - 81
Signal Processing - March 2016 - 82
Signal Processing - March 2016 - 83
Signal Processing - March 2016 - 84
Signal Processing - March 2016 - 85
Signal Processing - March 2016 - 86
Signal Processing - March 2016 - 87
Signal Processing - March 2016 - 88
Signal Processing - March 2016 - 89
Signal Processing - March 2016 - 90
Signal Processing - March 2016 - 91
Signal Processing - March 2016 - 92
Signal Processing - March 2016 - 93
Signal Processing - March 2016 - 94
Signal Processing - March 2016 - 95
Signal Processing - March 2016 - 96
Signal Processing - March 2016 - 97
Signal Processing - March 2016 - 98
Signal Processing - March 2016 - 99
Signal Processing - March 2016 - 100
Signal Processing - March 2016 - 101
Signal Processing - March 2016 - 102
Signal Processing - March 2016 - 103
Signal Processing - March 2016 - 104
Signal Processing - March 2016 - 105
Signal Processing - March 2016 - 106
Signal Processing - March 2016 - 107
Signal Processing - March 2016 - 108
Signal Processing - March 2016 - 109
Signal Processing - March 2016 - 110
Signal Processing - March 2016 - 111
Signal Processing - March 2016 - 112
Signal Processing - March 2016 - 113
Signal Processing - March 2016 - 114
Signal Processing - March 2016 - 115
Signal Processing - March 2016 - 116
Signal Processing - March 2016 - 117
Signal Processing - March 2016 - 118
Signal Processing - March 2016 - 119
Signal Processing - March 2016 - 120
Signal Processing - March 2016 - 121
Signal Processing - March 2016 - 122
Signal Processing - March 2016 - 123
Signal Processing - March 2016 - 124
Signal Processing - March 2016 - 125
Signal Processing - March 2016 - 126
Signal Processing - March 2016 - 127
Signal Processing - March 2016 - 128
Signal Processing - March 2016 - Cover3
Signal Processing - March 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com