Signal Processing - March 2017 - 122
social makes automating vehicles
anĀ ultrahard problem to tackle. We
observe cues from vehicles while we
drive that suggest we should drive
more cautiously (e.g., a pedestrian
looking at his smartphone while walking toward an intersection) or even
avoid certain driving scenarios (e.g.,
an overzealous driver swerving through
lanes). While it's unreasonable to
expect that self-driving cars could make
the same social observations that we
make as humans, what we can expect is
that technology will assist us in being
as aware and informed as possible.
Already there have been advancements
made by the signal processing community to estimate driver distraction using
in-vehicle sensors and cue the driver to
focus on the road. However, there are
many other opportunities for signal processing engineers to analyze human
behavior data associated with driving,
ReADeR's ChoiCe
Author note
Some parts of this article originally
appeared on Robotic Tips website; http://
www.robotictips.com.
Author
Wade Trappe (trappe@winlab.rutgers
.edu) received his B.A. degree in mathematics from the University of Texas at
Austin and his Ph.D. degree in applied
mathematics and scientific computing
from the University of Maryland. He is
an IEEE Fellow, and a professor of
electrical and computer engineering
at Rutgers University, New Brunswick,
New Jersey.
References
[1] D. Ngo. (14, Sept. 2016). Tragic Tesla crashes in
China. [Online]. Available: www.cnet.com/news/
dash-cam-showed-fatal-tesla-crash-in-china
[2] D Shepardson. (26 July 2016). Tragic Tesla crashes in the U.S. [Online]. Available: www.reuters.com/
article/us-tesla-autopilot-idUSKCN1062CT
[3] A Webb. (19 July 2016). Cybersecurity is biggest
risk of autonomous cars: Survey finds. [Online]. Available: www.bloomberg.com/news/articles/2016-07-19/
cybersecurity-is-biggest-risk-of-autonomous-carssurvey-finds
sp
(continued from page 13)
Tensor Decompositions for Signal
Processing Applications: From
Two-Way to Multiway Component
Analysis
Cichocki, A.; Mandic, D.; Lathauwer,
L. De; Zhou, G.; Zhao, Q.; Caiafa,
C.; Phan, H.A.
The authors have shown that tensor
decompositions are a good match for
exploratory analysis of multifaceted
data sets and have illustrated their
applications in multisensor and
multimodal signal processing. Their
empha sis has shown that tensor decompositions and multilinear algebra
open up completely new possibilities
for component analysis, as compared
with the flat view of standard twoway methods.
March 2015
122
which will be essential for improving
driver and pedestrian safety.
The future of vehicular systems is
data and sensor driven. Vehicles will
become increasingly networked and outfitted with sensors and share their data
with a variety of in-vehicle and cloudbased computing services. The societal
benefits associated with improved vehicular systems range from energy efficiency resulting from swarm driving to the
potential for saving many lives should
the technology mature. While this future
is exciting, engineers, researchers, and
technologists must quickly act to develop the new signal and information processing innovations required to make
future vehicular systems safe.
Euclidean Distance Matrices: Essential
Theory, Algorithms, and Applications
Dokmanic, I.; Parhizkar, R.; Ranieri,
J.; Vetterli, M.
This article reviews the fundamental
properties of Euclidean distance matrices (EDMs) and shows how the various
EDM properties can be used to design
algorithms for completing and denoising distance data. Some directions are
given for further research.
November 2015
Bayesian Machine Learning:
EEG/MEG Signal Processing
Measurements
Wu, W.; Nagarajan, S.; Chen, Z.
To review recent advances and to foster
new research ideas, this article provides a
tutorial on several important emerging
IEEE Signal Processing Magazine
|
March 2017
|
Bayesian machine learning research topics in electroencephalography (EEG)/
magnetoencephalography (MEG) signal
processing and presents representative
examples in EEG/MEG applications.
January 2016
Compressive Covariance Sensing:
Structure-Based Compressive
Sensing Beyond Sparsity
Romero, D.; Ariananda, D.D.;
Tian, Z.; Leus, G.
This article is concerned with the
reconstruction of second-order statistics, such as covariance and power
spectrum, instead of the reconstruction
of signals in compressed sensing, even
in the absence of sparsity priors.
January 2016
sp
http://www.cnet.com/news/
http://www.reuters.com/
http://www.bloomberg.com/news/articles/2016-07-19/
http://http://
http://www.robotictips.com
Table of Contents for the Digital Edition of Signal Processing - March 2017
Signal Processing - March 2017 - Cover1
Signal Processing - March 2017 - Cover2
Signal Processing - March 2017 - 1
Signal Processing - March 2017 - 2
Signal Processing - March 2017 - 3
Signal Processing - March 2017 - 4
Signal Processing - March 2017 - 5
Signal Processing - March 2017 - 6
Signal Processing - March 2017 - 7
Signal Processing - March 2017 - 8
Signal Processing - March 2017 - 9
Signal Processing - March 2017 - 10
Signal Processing - March 2017 - 11
Signal Processing - March 2017 - 12
Signal Processing - March 2017 - 13
Signal Processing - March 2017 - 14
Signal Processing - March 2017 - 15
Signal Processing - March 2017 - 16
Signal Processing - March 2017 - 17
Signal Processing - March 2017 - 18
Signal Processing - March 2017 - 19
Signal Processing - March 2017 - 20
Signal Processing - March 2017 - 21
Signal Processing - March 2017 - 22
Signal Processing - March 2017 - 23
Signal Processing - March 2017 - 24
Signal Processing - March 2017 - 25
Signal Processing - March 2017 - 26
Signal Processing - March 2017 - 27
Signal Processing - March 2017 - 28
Signal Processing - March 2017 - 29
Signal Processing - March 2017 - 30
Signal Processing - March 2017 - 31
Signal Processing - March 2017 - 32
Signal Processing - March 2017 - 33
Signal Processing - March 2017 - 34
Signal Processing - March 2017 - 35
Signal Processing - March 2017 - 36
Signal Processing - March 2017 - 37
Signal Processing - March 2017 - 38
Signal Processing - March 2017 - 39
Signal Processing - March 2017 - 40
Signal Processing - March 2017 - 41
Signal Processing - March 2017 - 42
Signal Processing - March 2017 - 43
Signal Processing - March 2017 - 44
Signal Processing - March 2017 - 45
Signal Processing - March 2017 - 46
Signal Processing - March 2017 - 47
Signal Processing - March 2017 - 48
Signal Processing - March 2017 - 49
Signal Processing - March 2017 - 50
Signal Processing - March 2017 - 51
Signal Processing - March 2017 - 52
Signal Processing - March 2017 - 53
Signal Processing - March 2017 - 54
Signal Processing - March 2017 - 55
Signal Processing - March 2017 - 56
Signal Processing - March 2017 - 57
Signal Processing - March 2017 - 58
Signal Processing - March 2017 - 59
Signal Processing - March 2017 - 60
Signal Processing - March 2017 - 61
Signal Processing - March 2017 - 62
Signal Processing - March 2017 - 63
Signal Processing - March 2017 - 64
Signal Processing - March 2017 - 65
Signal Processing - March 2017 - 66
Signal Processing - March 2017 - 67
Signal Processing - March 2017 - 68
Signal Processing - March 2017 - 69
Signal Processing - March 2017 - 70
Signal Processing - March 2017 - 71
Signal Processing - March 2017 - 72
Signal Processing - March 2017 - 73
Signal Processing - March 2017 - 74
Signal Processing - March 2017 - 75
Signal Processing - March 2017 - 76
Signal Processing - March 2017 - 77
Signal Processing - March 2017 - 78
Signal Processing - March 2017 - 79
Signal Processing - March 2017 - 80
Signal Processing - March 2017 - 81
Signal Processing - March 2017 - 82
Signal Processing - March 2017 - 83
Signal Processing - March 2017 - 84
Signal Processing - March 2017 - 85
Signal Processing - March 2017 - 86
Signal Processing - March 2017 - 87
Signal Processing - March 2017 - 88
Signal Processing - March 2017 - 89
Signal Processing - March 2017 - 90
Signal Processing - March 2017 - 91
Signal Processing - March 2017 - 92
Signal Processing - March 2017 - 93
Signal Processing - March 2017 - 94
Signal Processing - March 2017 - 95
Signal Processing - March 2017 - 96
Signal Processing - March 2017 - 97
Signal Processing - March 2017 - 98
Signal Processing - March 2017 - 99
Signal Processing - March 2017 - 100
Signal Processing - March 2017 - 101
Signal Processing - March 2017 - 102
Signal Processing - March 2017 - 103
Signal Processing - March 2017 - 104
Signal Processing - March 2017 - 105
Signal Processing - March 2017 - 106
Signal Processing - March 2017 - 107
Signal Processing - March 2017 - 108
Signal Processing - March 2017 - 109
Signal Processing - March 2017 - 110
Signal Processing - March 2017 - 111
Signal Processing - March 2017 - 112
Signal Processing - March 2017 - 113
Signal Processing - March 2017 - 114
Signal Processing - March 2017 - 115
Signal Processing - March 2017 - 116
Signal Processing - March 2017 - 117
Signal Processing - March 2017 - 118
Signal Processing - March 2017 - 119
Signal Processing - March 2017 - 120
Signal Processing - March 2017 - 121
Signal Processing - March 2017 - 122
Signal Processing - March 2017 - 123
Signal Processing - March 2017 - 124
Signal Processing - March 2017 - Cover3
Signal Processing - March 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com