Signal Processing - May 2016 - 107
[31] K. T. Sweeney, S. F. McLoone, and T. E. Ward, "The use of ensemble empirical
mode decomposition with canonical correlation analysis as a novel artifact removal
technique," IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 97-105, Jan. 2013.
[32] X. Chen, A. Liu, H. Peng, and R. K. Ward, "A preliminary study of muscular
artifact cancellation in single-channel EEG," Sensors, vol. 14, no. 10, pp. 18370-
18389, Oct. 2014.
[33] Y. Zhang, G. Zhou, J. Jin, M. Wang, X. Wang, and A. Cichocki, "L1-regularized multiway canonical correlation analysis for ssvep-based bci," IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 21, no. 6, pp. 887-896, Nov. 2013.
[34] A. McIntosh, F. Bookstein, J. Haxby, and C. Grady, "Spatial pattern analysis
of functional brain images using partial least squares," Neuroimage, vol. 3, no. 3,
pp. 143-157, June 1996.
[53] B. Mijovic´, M. D. Vos, I. Gligorijevic´, J. Taelman, and S. V. Huffel, "Source
separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis," IEEE Trans. Biomed. Eng., vol.
57, no. 9, pp. 2188-2196, June 2010.
[54] M. Cheng, X. Gao, S. Gao, and D. Xu, "Design and implementation of a
brain-computer interface with high transfer rates," IEEE Trans. Biomed. Eng., vol.
49, no. 10, pp. 1181-1186, Oct. 2002.
[55] Z. Lin, C. Zhang, W. Wu, and X. Gao, "Frequency recognition based on
canonical correlation analysis for SSVEP-based BCIs," IEEE Trans. Biomed.
Eng., vol. 53, no. 12, pp. 2610-2614, June 2006.
[56] J. Liu and V. D. Calhoun, "A review of multi variate analyses in imaging
genetics," Front. Neuroinform., vol. 8, pp. 1-11, Mar. 2014.
[35] E. Martínez-Montes, P. A. Valdés-Sosa, F. Miwakeichi, R. I. Goldman, and M.
S. Cohen, "Concurrent EEG/fMRI analysis by multiway partial least squares,"
Neuroimage, vol. 22, no. 3, pp. 1023-1034, July 2004.
[57] Z. Boukouvalas, G. S. Fu, T. Adali, "An efficient multivariate generalized
Gaussian distribution estimator: Application to IVA," in 49th Annu. Conf. Information Sciences and Systems (CISS), Baltimore, MD, 2015, pp. 1-4.
[36] J. Chiang, Z. J. Wang, and M. J. McKeown, "A multiblock PLS model of cortico-cortical and corticomuscular interactions in Parkinson's disease," Neuroimage, vol. 63, no. 3, pp. 1498-1509, Nov. 2012.
[58] R. F. Silva, S. M. Plis, T. Adali, V. D. Calhoun, "Multidataset independent
subspace analysis extends independent vector analysis," in IEEE Int. Conf. Image
Processing (ICIP), Paris, France, 2014, pp. 2864-2868.
[37] W. D. Clercq, A. Vergult, B. Vanrumste, W. Van Paesschen, and S. Van Huffel,
"Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram," IEEE Trans. Biomed. Eng., vol. 53, no. 12, pp. 2583-2587, Dec. 2006.
[59] D. Lahat and C. Jutten. (2015, Jan.). Joint Independent Subspace Analysis
Using Second-Order Statistics. HAL. France. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01132297v3
[38] F. Lindgren, P. Geladi, and S. Wold, "The kernel algorithm for PLS," J. Chemometrics, vol. 7, no. 1, pp. 45-59, Jan./Feb.1993.
[60] H. Hotelling, "Relations between two sets of variates," Biometrika, vol. 28,
no. 3/4, pp. 321-377, Dec. 1936.
[39] M. G. Gustafsson, "Independent component analysis yields chemically interpretable latent variables in multivariate regression," J. Chem. Inf. Model., vol. 45,
no. 5, pp. 1244-1255, Sept.-Oct. 2005.
[61] A. Hyvärinen and E. Oja, "Fast fixed-point algorithm for independent component analysis," Neural Comput., vol. 9, no. 7, pp. 1483-1492, Oct. 1997.
[40] J. Liu, V. D. Calhoun, "Parallel independent component analysis for multimodal analysis: application to fMRI and EEG data," in Proc. IEEE Int. Symp. Biomedical Imaging Conf., Arlington, VA, 2007, pp. 1028-1031, 2007.
[41] J. Liu, G. Pearlson, A. Windemuth, G. Ruano, N. I. Perrone-Bizzozero, and V.
Calhoun, "Combining fMRI and SNP data to investigate connections between
brain function and genetics using parallel ICA," Hum. Brain Mapp., vol. 30, no. 1,
pp. 241-255, Jan. 2009.
[42] J. Liu, K. A. Kiehl, G. Pearlson, N. I. Perrone-Bizzozero, T. Eichele, and V.
D. Calhoun, "Genetic determinants of target and novelty-related event-related
potentials in the auditory oddball response," Neuroimage, vol. 46, no. 3, pp. 809-
816, July 2009.
[43] N. M. Correa, T. Eichele, T. Adali, Y. Li, and V. D. Calhoun, "Multi-set
canonical correlation analysis for the fusion of concurrent single trial ERP and
functional MRI," Neuroimage, vol. 50, no. 4, pp. 1438-1445, Jan. 2010.
[44] X. Li, T. Adalı, and M. Anderson, "Joint blind source separation by generalized joint diagonalization of cumulant matrices," Signal Processing, vol. 91, no.
10, pp. 2314-2322, Oct. 2011.
[45] N. M. Correa, Y. Li, T. Adali, V. D. Calhoun, "Fusion of fMRI, sMRI, and
EEG data using canonical correlation analysis," IEEE Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP), Taipei, Taiwan, 2009, pp. 385-388.
[46] A. R. Groves, C. F. Beckmann, S. M. Smith, and M. W. Woolrich, "Linked
independent component analysis for multimodal data fusion," Neuroimage, vol.
54, no. 3, pp. 2198-2217, Feb. 2011.
[47] J. Sui, G. Pearlson, A. Caprihan, T. Adali, K. A. Kiehl, J. Liu, J. Yamamoto,
and V. D. Calhoun, "Discriminating schizophrenia and bipolar disorder by fusing
fMRI and DTI in a multimodal CCA+ joint ICA model," Neuroimage, vol. 57, no.
3, pp. 839-855, Aug. 2011.
[48] X. Chen, Z. J. Wang, and M. J. McKeown, "A three-step multimodal analysis
framework for modeling corticomuscular activity with application to Parkinson's
disease," IEEE J. Biomed. Health Inform., vol. 18, no. 4, pp. 1232-1241, July
2014.
[49] V. M. Vergara, A. Ulloa, V. D. Calhoun, D. Boutte, J. Chen, and J. Liu, "A
three-way parallel ICA approach to analyze links among genetics, brain structure
and brain function," Neuroimage, vol. 98, pp. 386-394, Sept. 2014.
[50] B. W. McMenamin, A. J. Shackman, L. L. Greischar, and R. J. Davidson,
"Electromyogenic artifacts and electroencephalographic inferences revisited,"
Neuroimage, vol. 54, no. 1, pp. 4-9, Jan. 2011.
[51] P. P. Acharjee, R. Phlypo, L. Wu, V. D. Calhoun, and T. Adali, "Independent
vector analysis for gradient artifact removal in concurrent EEG-fMRI data," IEEE
Trans. Biomed. Eng., vol. 62, no. 7, pp. 1750-1758, July 2015.
[52] A. Vergult, W. D. Clercq, A. Palmini, B. Vanrumste, P. Dupont, S. Van Huffel,
and W. Van Paesschen, "Improving the interpretation of ictal scalp EEG: BSS-CCA
algorithm for muscle artifact removal," Epilepsia, vol. 48, no. 5, pp. 950-958, Mar.
2007.
[62] D. Emge, F. Vialette, G. Dreyfus, T. Adali, "Independent vector analysis for
SSVEP signal enhancement," in Proc. Conf. Information Sciences and Systems,
Baltimore, MD, 2015.
[63] O. Alter, P. O. Brown, and D. Botstein, "Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different
organisms," Proc. Natl. Acad. Sci. U S A, vol. 100, no. 6, pp. 3351-3356, Mar. 2003.
[64] S. P. Ponnapalli, M. A. Saunders, C. F. Van Loan, and O. Alter, "A higher-order
generalized singular value decomposition for comparison of global mRNA expression from multiple organisms," PLoS One, vol. 6, no. 12, pp. e28072, Dec. 2011.
[65] V. Tsatsishvili, F. Cong, P. Toiviainen, T. Ristaniemi, "Combining PCA and
multiset CCA for dimension reduction when group ICA is applied to decompose
naturalistic fMRI data," in Int. Joint Conf. Neural Networks (IJCNN), Anchorage,
Alaska, 2015, pp. 1-6.
[66] N. J. Roseveare and P. J. Schreier, "Model-order selection for analyzing correlation between two data sets using CCA with PCA preprocessing," in IEEE Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, Australia,
2015, pp. 5684-5687.
[67] T. Lofstedt and J. Trygg, "OnPLS-a novel multiblock method for the modelling of predictive and orthogonal variation," J. Chemometrics, vol. 25, no. 8, pp.
441-455, Aug. 2011.
[68] T. Adali, Y. Levin-Schwartz, and V. D. Calhoun, "Multimodal data fusion
using source separation: Two effective models based on ICA and IVA and
their properties," Proc. IEEE, vol. 103, no. 9, pp. 1478-1493, Sept. 2015.
[69] V. D. Calhoun, T. Adali, J. J. Pekar, and G. D. Pearlson, "A method for
making group inferences from functional MRI data using independent component analysis," Hum. Brain Mapp., vol. 14, no. 2, pp. 140-151, Nov.
2001.
[70] V. D. Calhoun and T. Adali, "Multi subject independent component analysis
of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery," IEEE Rev.Biomed. Eng., vol. 5, pp. 60-73, 2012.
[71] Y. Levin-Schwartz, V. D. Calhoun, and T. Adali, "Data-driven fusion of EEG,
functional and structural MRI: A comparison of two models," in 48th Annu.
Conf. Information Sciences and Systems (CISS), Princeton, NJ, 2014, pp. 1-6.
[72] G. S. Fu, R. Phlypo, M. Anderson, X. L. Li, and T. Adali, "Blind source separation by entropy rate minimization," IEEE Trans. Signal Processing, vol. 62, no.
16, pp. 4245-4255,June 2014.
[73] K. Nathwani and R. M. Hegde, "Joint source separation and dereverberation
using constrained spectral divergence optimization," Signal Processing, vol. 106,
pp. 266-281, Jan. 2015.
[74] T. Fearn, "On orthogonal signal correction," Chemometrics and Intelligent
Laboratory Syst., vol. 50, no. 1, pp. 47-52, Jan. 2000.
[75] M. J. McKeown and G. M. Peavy,"Biomarkers in Parkinson disease: It's time
to combine," Neurology, vol. 84, no. 24, pp. 2392-2393, June 2015.
IEEE Signal Processing Magazine
SP
|
May 2016
|
107
https://hal
http://www.archives-ouvertes.fr/hal-01132297v3
Table of Contents for the Digital Edition of Signal Processing - May 2016
Signal Processing - May 2016 - Cover1
Signal Processing - May 2016 - Cover2
Signal Processing - May 2016 - 1
Signal Processing - May 2016 - 2
Signal Processing - May 2016 - 3
Signal Processing - May 2016 - 4
Signal Processing - May 2016 - 5
Signal Processing - May 2016 - 6
Signal Processing - May 2016 - 7
Signal Processing - May 2016 - 8
Signal Processing - May 2016 - 9
Signal Processing - May 2016 - 10
Signal Processing - May 2016 - 11
Signal Processing - May 2016 - 12
Signal Processing - May 2016 - 13
Signal Processing - May 2016 - 14
Signal Processing - May 2016 - 15
Signal Processing - May 2016 - 16
Signal Processing - May 2016 - 17
Signal Processing - May 2016 - 18
Signal Processing - May 2016 - 19
Signal Processing - May 2016 - 20
Signal Processing - May 2016 - 21
Signal Processing - May 2016 - 22
Signal Processing - May 2016 - 23
Signal Processing - May 2016 - 24
Signal Processing - May 2016 - 25
Signal Processing - May 2016 - 26
Signal Processing - May 2016 - 27
Signal Processing - May 2016 - 28
Signal Processing - May 2016 - 29
Signal Processing - May 2016 - 30
Signal Processing - May 2016 - 31
Signal Processing - May 2016 - 32
Signal Processing - May 2016 - 33
Signal Processing - May 2016 - 34
Signal Processing - May 2016 - 35
Signal Processing - May 2016 - 36
Signal Processing - May 2016 - 37
Signal Processing - May 2016 - 38
Signal Processing - May 2016 - 39
Signal Processing - May 2016 - 40
Signal Processing - May 2016 - 41
Signal Processing - May 2016 - 42
Signal Processing - May 2016 - 43
Signal Processing - May 2016 - 44
Signal Processing - May 2016 - 45
Signal Processing - May 2016 - 46
Signal Processing - May 2016 - 47
Signal Processing - May 2016 - 48
Signal Processing - May 2016 - 49
Signal Processing - May 2016 - 50
Signal Processing - May 2016 - 51
Signal Processing - May 2016 - 52
Signal Processing - May 2016 - 53
Signal Processing - May 2016 - 54
Signal Processing - May 2016 - 55
Signal Processing - May 2016 - 56
Signal Processing - May 2016 - 57
Signal Processing - May 2016 - 58
Signal Processing - May 2016 - 59
Signal Processing - May 2016 - 60
Signal Processing - May 2016 - 61
Signal Processing - May 2016 - 62
Signal Processing - May 2016 - 63
Signal Processing - May 2016 - 64
Signal Processing - May 2016 - 65
Signal Processing - May 2016 - 66
Signal Processing - May 2016 - 67
Signal Processing - May 2016 - 68
Signal Processing - May 2016 - 69
Signal Processing - May 2016 - 70
Signal Processing - May 2016 - 71
Signal Processing - May 2016 - 72
Signal Processing - May 2016 - 73
Signal Processing - May 2016 - 74
Signal Processing - May 2016 - 75
Signal Processing - May 2016 - 76
Signal Processing - May 2016 - 77
Signal Processing - May 2016 - 78
Signal Processing - May 2016 - 79
Signal Processing - May 2016 - 80
Signal Processing - May 2016 - 81
Signal Processing - May 2016 - 82
Signal Processing - May 2016 - 83
Signal Processing - May 2016 - 84
Signal Processing - May 2016 - 85
Signal Processing - May 2016 - 86
Signal Processing - May 2016 - 87
Signal Processing - May 2016 - 88
Signal Processing - May 2016 - 89
Signal Processing - May 2016 - 90
Signal Processing - May 2016 - 91
Signal Processing - May 2016 - 92
Signal Processing - May 2016 - 93
Signal Processing - May 2016 - 94
Signal Processing - May 2016 - 95
Signal Processing - May 2016 - 96
Signal Processing - May 2016 - 97
Signal Processing - May 2016 - 98
Signal Processing - May 2016 - 99
Signal Processing - May 2016 - 100
Signal Processing - May 2016 - 101
Signal Processing - May 2016 - 102
Signal Processing - May 2016 - 103
Signal Processing - May 2016 - 104
Signal Processing - May 2016 - 105
Signal Processing - May 2016 - 106
Signal Processing - May 2016 - 107
Signal Processing - May 2016 - 108
Signal Processing - May 2016 - 109
Signal Processing - May 2016 - 110
Signal Processing - May 2016 - 111
Signal Processing - May 2016 - 112
Signal Processing - May 2016 - 113
Signal Processing - May 2016 - 114
Signal Processing - May 2016 - 115
Signal Processing - May 2016 - 116
Signal Processing - May 2016 - 117
Signal Processing - May 2016 - 118
Signal Processing - May 2016 - 119
Signal Processing - May 2016 - 120
Signal Processing - May 2016 - Cover3
Signal Processing - May 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com