Signal Processing - May 2016 - 110
beyond the cutoff frequency. For the
modified window design method, the
discrete frequency response is simulated using H ^mh = e c m , - ^ M - 1h /2
# m # ^ M - 1h /2 . Notice that the
parameter c controls the shape of H (m) .
When c is set at zero, H (m) is reduced
to that for the traditional window design
method. Applying H (m) as a symmetric
exponential function induces a ripple at
the passband edge so that the composite
filter has a flat passband. The timedomain filter coefficients h ∞ (n) is
obtained by applying the IDFT equation
to H (m) as
H (f )
Cutoff
Frequency
1
-fs
0
Frequency (f )
-fs /2
fs /2
fs
(a)
For Window
Design Method
m = -N
(-fs )
H (m )
m = -(M - 1)/2
For Modified Window
Design Method
m = (M - 1)/2
(0)
h ∞ (n) = 1
N
m=N
(fs )
M
Frequency (m )
(b)
FIGure 5. LPF frequency responses for the modified window design method and the window design
method: (a) continuous frequency response H(f); (b) periodic, discrete frequency response H(m).
of the M frequency-domain samples of
H (m) . Notice that H (m) is periodic
with a period identical to the sample
rate fs . We then apply the discrete frequency response H (m) to the inverse
discrete Fourier transform (IDFT)
equation to get the time domain h ∞ (n) .
The filter coefficients are obtained by
calculating h (n) = h ∞ (n) $ w (n) , where
w (n) represents a window function to
truncate h ∞ (n) .
In this article, to design the prototype filter with a deliberately generated
ripple at the passband edge, we remodel
a continuous LPF frequency response
H ( f ) by using an exponential function.
This method is called the modified window design method.
In contrast to the window design
method, the passband frequency
response of the modified window design
method is exponential and is zero
∆γ
Magnitude (dB)
0
γ Increases
∆0
γ =0
ωc
ω (rad./Sample)
FIGure 6. The comparison of the magnitude frequency responses of two lowpass FIR filters designed using the modified window design method. One filter is with c = 0 and the other is with c > 0.
110
IEEE SIgnal ProcESSIng MagazInE
|
May 2016
|
(M -1) /2
/
e c m e j2rmn/N ,
m =-(M -1)/2
(6)
where n is an integer. If we set c at
zero, then the modified window design
method is reduced to the traditional
window design method. Reorganizing
(6), we obtain the simplified representation of h ∞ (n) as
M -1
2
h (n) = 1 >1 + 2 / e cm cos ` 2rmn jH .
N
N
m =1
∞
(7)
The filter coefficients are obtained by
calculating
h (n) = h ∞ (n) $ w (n),
(8)
where w (n) represents a window function to truncate h ∞ (n) . More coefficients can be used for w (n) to narrow
the filter transition region. As c increases, the ripple induced at the passband
becomes more substantial.
Both the window design method and
modified method enhance the stopband
attenuation through a smooth window
function other than a rectangular window function. Some commonly used
window functions include the Blackman, Chebyshev, and Kaiser window
functions [1]. We adopt the Blackman
window for illustration.
Figure 6 presents a comparison of
the magnitude frequency responses
for difference choices of c designed
using the modified window design
method. In contrast to the traditional
Table of Contents for the Digital Edition of Signal Processing - May 2016
Signal Processing - May 2016 - Cover1
Signal Processing - May 2016 - Cover2
Signal Processing - May 2016 - 1
Signal Processing - May 2016 - 2
Signal Processing - May 2016 - 3
Signal Processing - May 2016 - 4
Signal Processing - May 2016 - 5
Signal Processing - May 2016 - 6
Signal Processing - May 2016 - 7
Signal Processing - May 2016 - 8
Signal Processing - May 2016 - 9
Signal Processing - May 2016 - 10
Signal Processing - May 2016 - 11
Signal Processing - May 2016 - 12
Signal Processing - May 2016 - 13
Signal Processing - May 2016 - 14
Signal Processing - May 2016 - 15
Signal Processing - May 2016 - 16
Signal Processing - May 2016 - 17
Signal Processing - May 2016 - 18
Signal Processing - May 2016 - 19
Signal Processing - May 2016 - 20
Signal Processing - May 2016 - 21
Signal Processing - May 2016 - 22
Signal Processing - May 2016 - 23
Signal Processing - May 2016 - 24
Signal Processing - May 2016 - 25
Signal Processing - May 2016 - 26
Signal Processing - May 2016 - 27
Signal Processing - May 2016 - 28
Signal Processing - May 2016 - 29
Signal Processing - May 2016 - 30
Signal Processing - May 2016 - 31
Signal Processing - May 2016 - 32
Signal Processing - May 2016 - 33
Signal Processing - May 2016 - 34
Signal Processing - May 2016 - 35
Signal Processing - May 2016 - 36
Signal Processing - May 2016 - 37
Signal Processing - May 2016 - 38
Signal Processing - May 2016 - 39
Signal Processing - May 2016 - 40
Signal Processing - May 2016 - 41
Signal Processing - May 2016 - 42
Signal Processing - May 2016 - 43
Signal Processing - May 2016 - 44
Signal Processing - May 2016 - 45
Signal Processing - May 2016 - 46
Signal Processing - May 2016 - 47
Signal Processing - May 2016 - 48
Signal Processing - May 2016 - 49
Signal Processing - May 2016 - 50
Signal Processing - May 2016 - 51
Signal Processing - May 2016 - 52
Signal Processing - May 2016 - 53
Signal Processing - May 2016 - 54
Signal Processing - May 2016 - 55
Signal Processing - May 2016 - 56
Signal Processing - May 2016 - 57
Signal Processing - May 2016 - 58
Signal Processing - May 2016 - 59
Signal Processing - May 2016 - 60
Signal Processing - May 2016 - 61
Signal Processing - May 2016 - 62
Signal Processing - May 2016 - 63
Signal Processing - May 2016 - 64
Signal Processing - May 2016 - 65
Signal Processing - May 2016 - 66
Signal Processing - May 2016 - 67
Signal Processing - May 2016 - 68
Signal Processing - May 2016 - 69
Signal Processing - May 2016 - 70
Signal Processing - May 2016 - 71
Signal Processing - May 2016 - 72
Signal Processing - May 2016 - 73
Signal Processing - May 2016 - 74
Signal Processing - May 2016 - 75
Signal Processing - May 2016 - 76
Signal Processing - May 2016 - 77
Signal Processing - May 2016 - 78
Signal Processing - May 2016 - 79
Signal Processing - May 2016 - 80
Signal Processing - May 2016 - 81
Signal Processing - May 2016 - 82
Signal Processing - May 2016 - 83
Signal Processing - May 2016 - 84
Signal Processing - May 2016 - 85
Signal Processing - May 2016 - 86
Signal Processing - May 2016 - 87
Signal Processing - May 2016 - 88
Signal Processing - May 2016 - 89
Signal Processing - May 2016 - 90
Signal Processing - May 2016 - 91
Signal Processing - May 2016 - 92
Signal Processing - May 2016 - 93
Signal Processing - May 2016 - 94
Signal Processing - May 2016 - 95
Signal Processing - May 2016 - 96
Signal Processing - May 2016 - 97
Signal Processing - May 2016 - 98
Signal Processing - May 2016 - 99
Signal Processing - May 2016 - 100
Signal Processing - May 2016 - 101
Signal Processing - May 2016 - 102
Signal Processing - May 2016 - 103
Signal Processing - May 2016 - 104
Signal Processing - May 2016 - 105
Signal Processing - May 2016 - 106
Signal Processing - May 2016 - 107
Signal Processing - May 2016 - 108
Signal Processing - May 2016 - 109
Signal Processing - May 2016 - 110
Signal Processing - May 2016 - 111
Signal Processing - May 2016 - 112
Signal Processing - May 2016 - 113
Signal Processing - May 2016 - 114
Signal Processing - May 2016 - 115
Signal Processing - May 2016 - 116
Signal Processing - May 2016 - 117
Signal Processing - May 2016 - 118
Signal Processing - May 2016 - 119
Signal Processing - May 2016 - 120
Signal Processing - May 2016 - Cover3
Signal Processing - May 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com