Signal Processing - May 2016 - 37

Introduction

water molecules move faster along, rather than across, structural constraints. By measuring their anisotropic diffusion,
we can infer the underlying structure of neuronal fibers.
Figure 1 shows a typical information flow of studying brain
connectivity using dMR imaging: neural fibers introduce
anisotropic diffusion (a) and influence magnetic resonance
(MR) signals generated from spinning protons (b); dMR signals are collected along many diffusion directions (c) and
then reconstructed at each voxel location as fiber orientation
distributions (FODs) (d); local fiber structures are assembled
and "weaved" together as long fiber tracks (e) to build a network (g) connecting brain cortex regions (f). These networks
are further investigated for their relationship with the brain's
function and development. We elaborate this procedure step
by step in the following sections.
We first look at how dMR signals are generated. Understanding the generation procedure is important for the processing and interpretation of dMR images. It also sheds light on
the potential limitations and caveats of using dMR images. We
start with the excitation of protons in a magnetic field and then
explain how diffusion affects signal resonation, with formulations in the so-called k-space and q-space. The relationship
between diffusion and magnetic resonation is the key to dMR
imaging and its data analysis.

This article covers key components in the workflow to map
structural connectivity of the human brain, including data
acquisition, neural fiber orientation modeling, image processing, tractography, and applications to brain studies. For
each topic, basic theories are reviewed, and major breakthroughs and state-of-the-art technologies are discussed. In
addition to an overview of existing technologies, we also
attempt to provide an outlook of future challenges in building
a comprehensive connectivity map that integrates genetic and
functional information.

dmr imaging
At a microscopic scale, water molecules in an isotropic medium move freely in all directions in a jittery and erratic fashion. This random walk was first noticed in 1827 by Scottish
botanist Robert Brown, explained physically by Albert Einstein in 1905, and later rigorously modeled as a mathematical stochastic process by Norbert Wiener. Movement of these
tiny molecules inspired mathematicians to develop elegant
theories now widely used not only by financial analysts but
also by medical engineers to "look" through the human brain
in vivo at its sophisticated neural network. In an anisotropic
medium, such as brain tissues containing neuronal fibers,

Across

Along
(a)

B
M
(b)

(e)

(d)

(g)

(f)
(c)

FIGURe 1. The information flow of structural connectivity analysis. (a) Water molecules move faster along, rather than across, neuronal fibers. (b) Diffusion affects the electromagnetic waves radiated by precessing protons. (c) dMR imaging captures diffusion signals along different directions and forms
images. (d) FODs are reconstructed from diffusion images. (e) Fiber tracks are simulated from FOD images. (f) The brain cortex is segmented into many
regions using structural MR images, for example, with FreeSurfer software [2]. (g) Connectivity networks between cortex regions are constructed from
fiber tracks.
IEEE Signal Processing Magazine

|

May 2016

|

37



Table of Contents for the Digital Edition of Signal Processing - May 2016

Signal Processing - May 2016 - Cover1
Signal Processing - May 2016 - Cover2
Signal Processing - May 2016 - 1
Signal Processing - May 2016 - 2
Signal Processing - May 2016 - 3
Signal Processing - May 2016 - 4
Signal Processing - May 2016 - 5
Signal Processing - May 2016 - 6
Signal Processing - May 2016 - 7
Signal Processing - May 2016 - 8
Signal Processing - May 2016 - 9
Signal Processing - May 2016 - 10
Signal Processing - May 2016 - 11
Signal Processing - May 2016 - 12
Signal Processing - May 2016 - 13
Signal Processing - May 2016 - 14
Signal Processing - May 2016 - 15
Signal Processing - May 2016 - 16
Signal Processing - May 2016 - 17
Signal Processing - May 2016 - 18
Signal Processing - May 2016 - 19
Signal Processing - May 2016 - 20
Signal Processing - May 2016 - 21
Signal Processing - May 2016 - 22
Signal Processing - May 2016 - 23
Signal Processing - May 2016 - 24
Signal Processing - May 2016 - 25
Signal Processing - May 2016 - 26
Signal Processing - May 2016 - 27
Signal Processing - May 2016 - 28
Signal Processing - May 2016 - 29
Signal Processing - May 2016 - 30
Signal Processing - May 2016 - 31
Signal Processing - May 2016 - 32
Signal Processing - May 2016 - 33
Signal Processing - May 2016 - 34
Signal Processing - May 2016 - 35
Signal Processing - May 2016 - 36
Signal Processing - May 2016 - 37
Signal Processing - May 2016 - 38
Signal Processing - May 2016 - 39
Signal Processing - May 2016 - 40
Signal Processing - May 2016 - 41
Signal Processing - May 2016 - 42
Signal Processing - May 2016 - 43
Signal Processing - May 2016 - 44
Signal Processing - May 2016 - 45
Signal Processing - May 2016 - 46
Signal Processing - May 2016 - 47
Signal Processing - May 2016 - 48
Signal Processing - May 2016 - 49
Signal Processing - May 2016 - 50
Signal Processing - May 2016 - 51
Signal Processing - May 2016 - 52
Signal Processing - May 2016 - 53
Signal Processing - May 2016 - 54
Signal Processing - May 2016 - 55
Signal Processing - May 2016 - 56
Signal Processing - May 2016 - 57
Signal Processing - May 2016 - 58
Signal Processing - May 2016 - 59
Signal Processing - May 2016 - 60
Signal Processing - May 2016 - 61
Signal Processing - May 2016 - 62
Signal Processing - May 2016 - 63
Signal Processing - May 2016 - 64
Signal Processing - May 2016 - 65
Signal Processing - May 2016 - 66
Signal Processing - May 2016 - 67
Signal Processing - May 2016 - 68
Signal Processing - May 2016 - 69
Signal Processing - May 2016 - 70
Signal Processing - May 2016 - 71
Signal Processing - May 2016 - 72
Signal Processing - May 2016 - 73
Signal Processing - May 2016 - 74
Signal Processing - May 2016 - 75
Signal Processing - May 2016 - 76
Signal Processing - May 2016 - 77
Signal Processing - May 2016 - 78
Signal Processing - May 2016 - 79
Signal Processing - May 2016 - 80
Signal Processing - May 2016 - 81
Signal Processing - May 2016 - 82
Signal Processing - May 2016 - 83
Signal Processing - May 2016 - 84
Signal Processing - May 2016 - 85
Signal Processing - May 2016 - 86
Signal Processing - May 2016 - 87
Signal Processing - May 2016 - 88
Signal Processing - May 2016 - 89
Signal Processing - May 2016 - 90
Signal Processing - May 2016 - 91
Signal Processing - May 2016 - 92
Signal Processing - May 2016 - 93
Signal Processing - May 2016 - 94
Signal Processing - May 2016 - 95
Signal Processing - May 2016 - 96
Signal Processing - May 2016 - 97
Signal Processing - May 2016 - 98
Signal Processing - May 2016 - 99
Signal Processing - May 2016 - 100
Signal Processing - May 2016 - 101
Signal Processing - May 2016 - 102
Signal Processing - May 2016 - 103
Signal Processing - May 2016 - 104
Signal Processing - May 2016 - 105
Signal Processing - May 2016 - 106
Signal Processing - May 2016 - 107
Signal Processing - May 2016 - 108
Signal Processing - May 2016 - 109
Signal Processing - May 2016 - 110
Signal Processing - May 2016 - 111
Signal Processing - May 2016 - 112
Signal Processing - May 2016 - 113
Signal Processing - May 2016 - 114
Signal Processing - May 2016 - 115
Signal Processing - May 2016 - 116
Signal Processing - May 2016 - 117
Signal Processing - May 2016 - 118
Signal Processing - May 2016 - 119
Signal Processing - May 2016 - 120
Signal Processing - May 2016 - Cover3
Signal Processing - May 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201809
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201807
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201805
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201803
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_201801
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0917
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0717
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0517
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0317
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0117
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0916
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0716
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0516
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0316
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0116
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0915
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0715
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0515
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0315
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0115
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0914
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0714
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0514
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0314
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0114
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0913
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0713
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0513
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0313
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0113
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0912
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0712
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0512
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0312
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0112
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0911
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0711
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0511
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0311
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0111
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0910
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0710
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0510
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0310
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0110
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0909
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0709
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0509
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0309
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0109
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_1108
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0908
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0708
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0508
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0308
https://www.nxtbook.com/nxtbooks/ieee/signalprocessing_0108
https://www.nxtbookmedia.com